• Title/Summary/Keyword: fuzzy classification method

Search Result 296, Processing Time 0.026 seconds

A study on classification of weld quality in high tensile TRIP steel welding for automotive using $CO_2$ laser ($CO_2$ 레이저를 이용한 자동차용 고장력 TRIP 강 용접의 용접부 품질 분류에 대한 연구)

  • 박영환;박현성;이세헌
    • Laser Solutions
    • /
    • v.5 no.3
    • /
    • pp.21-30
    • /
    • 2002
  • In automotive industry, the studies about light weight vehicle and improving the productivity have been accomplished. For that, TRIP steel was developed and research for the laser welding process have been performed. In this study, the monitoring system using photodiode was developed for laser welding process of TRIP steel. With measuring light, neural network model for estimating bead width and tensile strength was made and weld quality classification algorithm was formulated with fuzzy inference method.

  • PDF

Construction of Customer Appeal Classification Model Based on Speech Recognition

  • Sheng Cao;Yaling Zhang;Shengping Yan;Xiaoxuan Qi;Yuling Li
    • Journal of Information Processing Systems
    • /
    • v.19 no.2
    • /
    • pp.258-266
    • /
    • 2023
  • Aiming at the problems of poor customer satisfaction and poor accuracy of customer classification, this paper proposes a customer classification model based on speech recognition. First, this paper analyzes the temporal data characteristics of customer demand data, identifies the influencing factors of customer demand behavior, and determines the process of feature extraction of customer voice signals. Then, the emotional association rules of customer demands are designed, and the classification model of customer demands is constructed through cluster analysis. Next, the Euclidean distance method is used to preprocess customer behavior data. The fuzzy clustering characteristics of customer demands are obtained by the fuzzy clustering method. Finally, on the basis of naive Bayesian algorithm, a customer demand classification model based on speech recognition is completed. Experimental results show that the proposed method improves the accuracy of the customer demand classification to more than 80%, and improves customer satisfaction to more than 90%. It solves the problems of poor customer satisfaction and low customer classification accuracy of the existing classification methods, which have practical application value.

Classification of Korean Character Type using Multi Neural Network and Fuzzy Inference based on Block Partition for Each Type (형식별 블럭분할에 기초한 다중신경망과 퍼지추론에 의한 한글 형식분류)

  • Pyeon, Seok-Beom;Park, Jong-An
    • The Journal of the Acoustical Society of Korea
    • /
    • v.13 no.4
    • /
    • pp.5-11
    • /
    • 1994
  • In this paper, the ciassification of Korean character type using multi neural network and fuzzy inference based on block partition is studied. For the effective classification of a consonant and a vowel, block partition method which devide the region of a consonant and a vowel for each type in the character is proposed. And the partitioned block can be changed according to the each type adaptively. For the improvement of classification rate, the multi neural network with a whole and a part neural network is consisted, and the character type by using fuzzy inference is decided. To verify the validity of the proposed method, computer simulation is accomplished, and from the classification rate $92.6\%$, the effectivity of the method is confirmed.

  • PDF

Adaptive Fuzzy Inference Algorithm for Shape Classification

  • Kim, Yoon-Ho;Ryu, Kwang-Ryol
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.4 no.3
    • /
    • pp.611-618
    • /
    • 2000
  • This paper presents a shape classification method of dynamic image based on adaptive fuzzy inference. It describes the design scheme of fuzzy inference algorithm which makes it suitable for low speed systems such as conveyor, uninhabited transportation. In the first Discrete Wavelet Transform(DWT) is utilized to extract the motion vector in a sequential images. This approach provides a mechanism to simple but robust information which is desirable when dealing with an unknown environment. By using feature parameters of moving object, fuzzy if - then rule which can be able to adapt the variation of circumstances is devised. Then applying the implication function, shape classification processes are performed. Experimental results are presented to testify the performance and applicability of the proposed algorithm.

  • PDF

Fuzzy KANO Model: Fuzzy Set-Based Classification of Customer Requirements (Kano 모형에 기반한 소비자 요구사항 분류: 퍼지 접근방법)

  • 임정훈;민대기;김광재
    • Journal of Korean Society for Quality Management
    • /
    • v.31 no.3
    • /
    • pp.98-113
    • /
    • 2003
  • Kano model distinguishes three types of customer requirements, namely, one-dimensional quality, must-be quality, and attractive quality. There are a few methods for classifying a given customer requirement into one of the Kano's quality elements. However, the existing methods have a common limitation in that they are based on Kano evaluation table. Kano evaluation table is not always effective for the classification task, and suffers from a significant information loss. This paper proposes an alternative to Kano's evaluation table and a new classification scheme based on fuzzy set concept. The proposed method is illustrated using a case study on the ADSL service.

Insect Footprint Recognition using Trace Transform and a Fuzzy Method (Trace 변환과 펴지 기법을 이용한 곤충 발자국 인식)

  • Shin, Bok-Suk;Cha, Eui-Young;Woo, Young-Woon
    • Journal of Korea Multimedia Society
    • /
    • v.11 no.11
    • /
    • pp.1615-1623
    • /
    • 2008
  • This paper proposes methods to classify scanned insect footprints. We propose improved SOM and ART2 algorithms for extracting segments, basic areas for feature extraction, and utilize Trace transform and fuzzy weighted mean methods for extracting feature values for classification of the footprints. In the proposed method, regions are extracted by a morphological method in the beginning, and then improved SOM and ART2 algorithms are utilized to extract segments regardless of kinds of insects. Next, A Trace transform method is used to find feature values suitable for various kinds of deformation of insect footprints. In the Trace transform method, Triple features from reconstructed combination of diverse functions, are used to classify the footprints. In general, it is very difficult to decide automatically whether the extracted footprint segment is meaningful for classification or not. So we use a fuzzy weighted mean method for not excluding uncertain footprint segments because the uncertain footprint segments may be possible candidates for classification. We present experimental results of footprint segment extraction and segment classification by the proposed methods.

  • PDF

Vegetation Classification Using Seasonal Variation MODIS Data

  • Choi, Hyun-Ah;Lee, Woo-Kyun;Son, Yo-Whan;Kojima, Toshiharu;Muraoka, Hiroyuki
    • Korean Journal of Remote Sensing
    • /
    • v.26 no.6
    • /
    • pp.665-673
    • /
    • 2010
  • The role of remote sensing in phenological studies is increasingly regarded as a key in understanding large area seasonal phenomena. This paper describes the application of Moderate Resolution Imaging Spectroradiometer (MODIS) time series data for vegetation classification using seasonal variation patterns. The vegetation seasonal variation phase of Seoul and provinces in Korea was inferred using 8 day composite MODIS NDVI (Normalized Difference Vegetation Index) dataset of 2006. The seasonal vegetation classification approach is performed with reclassification of 4 categories as urban, crop land, broad-leaf and needle-leaf forest area. The BISE (Best Index Slope Extraction) filtering algorithm was applied for a smoothing processing of MODIS NDVI time series data and fuzzy classification method was used for vegetation classification. The overall accuracy of classification was 77.5% and the kappa coefficient was 0.61%, thus suggesting overall high classification accuracy.

Age of Face Classification based on Gabor Feature and Fuzzy Support Vector Machines (Gabor 특징과 FSVM 기반의 연령별 얼굴 분류)

  • Lee, Hyun-Jik;Kim, Yoon-Ho;Lee, Joo-Shin
    • Journal of Advanced Navigation Technology
    • /
    • v.16 no.1
    • /
    • pp.151-157
    • /
    • 2012
  • Recently, owing to the technology advances in computer science and image processing, age of face classification have become prevalent topics. It is difficult to estimate age of facial shape with statistical figures because facial shape of the person should change due to not only biological gene but also personal habits. In this paper, we proposed a robust age of face classification method by using Gabor feature and fuzzy support vector machine(SVM). Gabor wavelet function is used for extracting facial feature vector and in order to solve the intrinsic age ambiguity problem, a fuzzy support vector machine(FSVM) is introduced. By utilizing the FSVM age membership functions is defined. Some experiments have conducted to testify the proposed approach and experimental results showed that the proposed method can achieve better age of face classification precision.

Ellipsoid Fuzzy-ART for Pattern Recognition Improvement (패턴인식을 위한 타원형 Fuzzy-ART)

  • 강성호;정성부;임중규;이현관;엄기환
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2003.05a
    • /
    • pp.305-308
    • /
    • 2003
  • This paper proposed Ellipsoid Fuzzy-ART (Fuzzy-Adaptive Resonance Theory) for recognition performance improvement to use Mahalanobis distance. The suggested method uses Mahalanobis distance to decide pattern boundary region at vector space. In order to confirm the validity of proposed method, comparison of the performance has made between existing method and the proposed method through simulation.

  • PDF

Data Classification Using the Robbins-Monro Stochastic Approximation Algorithm (로빈스-몬로 확률 근사 알고리즘을 이용한 데이터 분류)

  • Lee, Jae-Kook;Ko, Chun-Taek;Choi, Won-Ho
    • Proceedings of the KIPE Conference
    • /
    • 2005.07a
    • /
    • pp.624-627
    • /
    • 2005
  • This paper presents a new data classification method using the Robbins Monro stochastic approximation algorithm k-nearest neighbor and distribution analysis. To cluster the data set, we decide the centroid of the test data set using k-nearest neighbor algorithm and the local area of data set. To decide each class of the data, the Robbins Monro stochastic approximation algorithm is applied to the decided local area of the data set. To evaluate the performance, the proposed classification method is compared to the conventional fuzzy c-mean method and k-nn algorithm. The simulation results show that the proposed method is more accurate than fuzzy c-mean method, k-nn algorithm and discriminant analysis algorithm.

  • PDF