• 제목/요약/키워드: fuzzy classification method

Search Result 296, Processing Time 0.031 seconds

Discriminative Power Feature Selection Method for Motor Imagery EEG Classification in Brain Computer Interface Systems

  • Yu, XinYang;Park, Seung-Min;Ko, Kwang-Eun;Sim, Kwee-Bo
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.13 no.1
    • /
    • pp.12-18
    • /
    • 2013
  • Motor imagery classification in electroencephalography (EEG)-based brain-computer interface (BCI) systems is an important research area. To simplify the complexity of the classification, selected power bands and electrode channels have been widely used to extract and select features from raw EEG signals, but there is still a loss in classification accuracy in the state-of- the-art approaches. To solve this problem, we propose a discriminative feature extraction algorithm based on power bands with principle component analysis (PCA). First, the raw EEG signals from the motor cortex area were filtered using a bandpass filter with ${\mu}$ and ${\beta}$ bands. This research considered the power bands within a 0.4 second epoch to select the optimal feature space region. Next, the total feature dimensions were reduced by PCA and transformed into a final feature vector set. The selected features were classified by applying a support vector machine (SVM). The proposed method was compared with a state-of-art power band feature and shown to improve classification accuracy.

Machine Cell Formation using A Classification Neural Network

  • Lee, Kyung-Mi;Lee, Keon-Myung
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.4 no.1
    • /
    • pp.84-89
    • /
    • 2004
  • The machine cell formation problem is the problem to group machines into machine families and parts into part families so as to minimize bottleneck machines, exceptional parts, and inter-cell part movements in cellular manufacturing systems and flexible manufacturing systems. This paper proposes a new machine cell formation method based on the adaptive Hamming net which is a kind of neural network model. To show the applicability of the proposed method, it presents some experiment results and compares the method with other cell formation methods. From the experiments, we observed that the proposed method could produce good cells for the machine cell formation problem.

Feature selection and Classification of Heart attack Using NEWFM of Neural Network (뉴럴네트워크(NEWFM)를 이용한 심근경색의 특징추출과 분류)

  • Yoon, Heejin
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.19 no.5
    • /
    • pp.151-155
    • /
    • 2019
  • Recently heart attack is 80% of the sudden death of elderly. The causes of a heart attack are complex and sudden, and it is difficult to predict the onset even if prevention or medical examination is performed. Therefore, early diagnosis and proper treatment are the most important. In this paper, we show the accuracy of normal and abnormal classification with neural network using weighted fuzzy function for accurate and rapid diagnosis of myocardial infarction. The data used in the experiment was data from the UCI Machine Learning Repository, which consists of 14 features and 303 sample data. The algorithm for feature selection uses the average of weight method. Two features were selected and removed. Heart attack was classified into normal and abnormal(1-normal, 2-abnormal) using the average of weight method. The test result for the diagnosis of heart attack using a weighted fuzzy neural network showed 87.66% accuracy.

Edge Detection By Fusion Using Local Information of Edges

  • Vlachos, Ioannis K.;Sergiadis, George D.
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2003.09a
    • /
    • pp.403-406
    • /
    • 2003
  • This paper presents a robust algorithm for edge detection based on fuzzy fusion, using a novel local edge information measure based on Renyi's a-order entropy. The calculation of the proposed measure is carried out using a parametric classification scheme based on local statistics. By suitably tuning its parameters, the local edge information measure is capable of extracting different types of edges, while exhibiting high immunity to noise. The notions of fuzzy measures and the Choquet fuzzy integral are applied to combine the different sources of information obtained using the local edge information measure with different sets of parameters. The effectiveness and the robustness of the new method are demonstrated by applying our algorithm to various synthetic computer-generated and real-world images.

  • PDF

Red Tide Blooms Prediction using Fuzzy Reasoning (퍼지 추론을 이용한 적조 발생 예측)

  • Park, Sun;Lee, Seong-Ro
    • The KIPS Transactions:PartB
    • /
    • v.18B no.5
    • /
    • pp.291-294
    • /
    • 2011
  • Red tide is a temporary natural phenomenon to change sea color by harmful algal blooms, which finfish and shellfish die en masse. There have been many studies on red tide due to increasing of harmful algae damage of fisheries in Korea. Particularly, red tide damage can be minimized by means of prediction of red tide blooms. However, the most of red tide research in Korea has been focused only classification of red tide which it is not enough for predicting red tide blooms. In this paper, we proposed the red tide blooms prediction method using fuzzy reasoning.

Neuro-Fuzzy Classification System of The New and Used Bills

  • Kang, Dong-Shik;Miyagi, Hayao;Omatu, Sigeru
    • Proceedings of the IEEK Conference
    • /
    • 2002.07b
    • /
    • pp.818-821
    • /
    • 2002
  • In this paper, we propose Neuro-Fuzzy discrimination method of the new and old bill using bill money acoustic data. The concept of the histogram is introduced to improve the processing time into the proposal system. The adaptative filter is used in order to remove the motor sound from an observed bill money acoustic data. The output signal of this adaptive digital filter is converted into not only a spectrum but also a histogram. It became easy that features of the paper money sound were extracted from the bill money acoustic data. The spectral data and the histogram is obtained like this, and it become an input pattern of the neural network(NN). Then, the discrimination result of the NN is finally judged by the fuzzy inferece in the new bill or the exhaustion bill.

  • PDF

Brain Magnetic Resonance Image Segmentation Using Adaptive Region Clustering and Fuzzy Rules (적응 영역 군집화 기법과 퍼지 규칙을 이용한 자기공명 뇌 영상의 분할)

  • 김성환;이배호
    • Proceedings of the IEEK Conference
    • /
    • 1999.11a
    • /
    • pp.525-528
    • /
    • 1999
  • Abstract - In this paper, a segmentation method for brain Magnetic Resonance(MR) image using region clustering technique with statistical distribution of gradient image and fuzzy rules is described. The brain MRI consists of gray matter and white matter, cerebrospinal fluid. But due to noise, overlap, vagueness, and various parameters, segmentation of MR image is a very difficult task. We use gradient information rather than intensity directly from the MR images and find appropriate thresholds for region classification using gradient approximation, rayleigh distribution function, region clustering, and merging techniques. And then, we propose the adaptive fuzzy rules in order to extract anatomical structures and diseases from brain MR image data. The experimental results shows that the proposed segmentation algorithm given better performance than traditional segmentation techniques.

  • PDF

Development of a Microscopic Gap Measuring Algorithm with a Fuzzy-RANSAC (퍼지란삭을 이용한 미소 거리 측정 알고리즘 개발)

  • Kim, Jae-Hoon;Park, Seung-Kyu;Yoon, Tae-Sung
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.1545-1546
    • /
    • 2008
  • In this study, an image processing method with FRANSAC(Fuzzy RANSAC) is presented and discussed for the development of a microscopic gap measuring algorithm. Many problems in edge detection processing are mainly occurred by the illumination system. A serious problem is that the edge set of gap could include the error elements that have relatively larger error than normal. This problem leads to a incorrect measurement of gap. We present a gap measuring algorithm using FRANSAC[1] that is a representative robust estimation algorithm. FRANSAC is peformed by first categorizing all data into good sample set, bad sample set and vague sample set using a fuzzy classification and then sampling in only good sample set. Experimental results show that the presented gap measuring algorithm gives a higher accurate value of gap especially for the more noisy image data.

  • PDF

Gait Recognition and Person Identification for Surveillance Robots (걸음걸이 인식을 통한 감시용 로봇에서의 개인 확인)

  • Park, Jin-Il;Lee, Wook-Jae;Cho, Jae-Hoon;Song, Chang-Kyu;Chun, Myung-Geun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.5
    • /
    • pp.511-518
    • /
    • 2009
  • The surveillance robot has been an important component in the field of service robot industry. In the surveillance robot technology, one of the most important technology is to identify a person. In this paper, we propose a gait recognition method based on contourlet and fuzzy LDA (Linear Discriminant Analysis) for surveillance robots. After decomposing a gait image into directional subband images by contourlet, features are obtained in each subband by the fuzzy LDA. The final gait recognition is performed by a fusion technique that effectively combines similarities calculated respectively in each local subband. To show the effectiveness of the proposed algorithm, various experiments are performed for CBNU and NLPR DB datasets. From these, we obtained better classification rates in comparison with the result produced by previous methods.

Grouping Parts Based on Group Technology Using a Neural Network (신경망을 이용한 GT 부품군 형성의 자동화)

  • Lee, Sung-Youl
    • IE interfaces
    • /
    • v.11 no.2
    • /
    • pp.119-124
    • /
    • 1998
  • This paper proposes a new part family classification system (IPFACS: Image Processing and Fuzzy ART based Clustering System), which incorporates image processing techniques and a modified fuzzy ART neural network algorithm. IPFACS can classify parts based on geometrical shape and manufacturing attributes, simultaneously. With a proper reduction and normalization of an image data through the image processing methods and adding method in the modified Fuzzy ART, different types of geometrical shape data and manufacturing attribute data can be simultaneously classified in the same system. IPFACS has been tested for an example set of hypothetical parts. The results show that IPFACS provides a good feasible approach to form families based on both geometrical shape and manufacturing attributes.

  • PDF