• Title/Summary/Keyword: fuzzy classification method

Search Result 296, Processing Time 0.023 seconds

Image Recognition by Fuzzy Logic and Genetic Algorithms (퍼지로직과 유전 알고리즘을 이용한 영상 인식)

  • Ryoo, Sang-Jin;Na, Chul-Hoon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.5
    • /
    • pp.969-976
    • /
    • 2007
  • A fuzzy classifier which needs various analyses of features using genetic algorithms is proposed. The fuzzy classifier has a simple structure, which contains a classification part based on fuzzy logic theory and a rule generation part using genetic algorithms. The rule generation part determines optimal fuzzy membership functions and inclusion or exclusion of each feature in fuzzy classification rules. We analyzed recognition rate of a specific object, then added finer features repetitively, if necessary, to the object which has large misclassification rate. And we introduce repetitive analyses method for the minimum size of string and population, and for the improvement of recognition rates. This classifier is applied to two examples of the recognition of iris data and the recognition of Thyroid Gland cancer cells. The fuzzy classifier proposed in this paper has recognition rates of 98.67% for iris data and 98.25% for Thyroid Gland cancer cells.

Recursive Fuzzy Partition of Pattern Space for Automatic Generation of Decision Rules (결정규칙의 자동생성을 위한 패턴공간의 재귀적 퍼지분할)

  • 김봉근;최형일
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.5 no.2
    • /
    • pp.28-43
    • /
    • 1995
  • This paper concerns with automatic generation of fuzzy rules which can be used for pattern classification. Feature space is recursively subdivided into hyperspheres, and each hypersphere is represented by its centroid and bounding distance. Fuzzy rules are then generated based on the constructed hyperspheres. The resulting fuzzy rules have very simple premise parts, and they can be organized into a hierarchical structure so that classification process can be implemented very rapidly. The experimented results show that the suggested method works very well compared to other methods.

  • PDF

EXPERT SYSTEM FOR A NUCLEAR POWER PLANT ACCIDENT DIAGNOSIS USING A FUZZY INFERENCE METHOD

  • Lee, Mal-Rey;Oh, Jong-Chul
    • Journal of applied mathematics & informatics
    • /
    • v.8 no.2
    • /
    • pp.505-518
    • /
    • 2001
  • The huge and complicated plants such as nuclear power stations are likely to cause the operators to make mistakes due to a variety of inexplicable reasons and symptoms in case of emergency. That’s why the prevention system assisting the operators is being developed for. First of all. I suggest an improved fuzzy diagnosis. Secondly, I want to demonstrate that a classification system of nuclear plant’s accident investigating the causes of accidents foresees possible problems, and maintains the reliability of the diagnostic reports in spite of improper working in part. In the event of emergency in a nuclear plant, a lot of operational steps enable the operators to find out what caused the problems based on an emergent operating plan. Our system is able to classify their types within twenty to thirty seconds. As so, we expect the system to put down the accidents right after the rapid detection of the damage control-method concerned.

A Fuzzy Image Contrast Enhancement Technique using the K-means Algorithm (K-means 알고리듬을 이용한 퍼지 영상 대비 강화 기법)

  • 정준희;김용수
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2002.12a
    • /
    • pp.295-299
    • /
    • 2002
  • This paper presents an image contrast enhancement technique for improving low contrast images. We applied fuzzy logic to develop an image contrast enhancement technique in the viewpoint of considering that the low pictorial information of a low contrast image is due to the vaguness or fuzziness of the multivalued levels of brightness rather than randomness. The fuzzy image contrast enhancement technique consists of three main stages, namely, image fuzzification, modification of membership values, and image defuzzification. In the stage of image fuzzification, we need to select a crossover point. To select the crossover point automatically the K-means algorithm is used. The problem of crossover point selection can be considered as the two-category, object and background, classification problem. The proposed method is applied to an experimental image with 256 gray levels and the result of the proposed method is compared with that of the histogram equalization technique. We used the index of fuzziness as a measure of image quality. The result shows that the proposed method is better than the histogram equalization technique.

Improved Detecting Schemes for Micro-Electronic Devices Based on Adaptive Hybrid Classification Algorithms (적응형 복합 분류 알고리즘을 이용한 초소형 전자소자 탐지 향상 기법)

  • Kim, Kwangyul;Lim, Jeonghwan;Kim, Songkang;Cho, Junkyung;Shin, Yoan
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38A no.6
    • /
    • pp.504-511
    • /
    • 2013
  • This paper proposes improved detection schemes for concealed micro-electronic devices using clustering and classification of radio frequency harmonics in order to protect intellectual property rights. In general, if a radio wave with a specific fundamental frequency is propagated from the transmitter of a classifier to a concealed object, the second and the third harmonics will be returned as the radio wave is reflected. Using this principle, we exploit the fuzzy c-means clustering and the ${\kappa}$-nearest neighbor classification for detecting diverse concealed objects. Simulation results indicate that the proposed scheme can detect electronic devices and metal devices in various learning environments by efficient classification. Thus, the proposed schemes can be utilized as an effective detection method for concealed micro-electronic device to protect intellectual property rights.

Auto-Tuning Method of Learning Rate for Performance Improvement of Backpropagation Algorithm (역전파 알고리즘의 성능개선을 위한 학습율 자동 조정 방식)

  • Kim, Joo-Woong;Jung, Kyung-Kwon;Eom, Ki-Hwan
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.39 no.4
    • /
    • pp.19-27
    • /
    • 2002
  • We proposed an auto-tuning method of learning rate for performance improvement of backpropagation algorithm. Proposed method is used a fuzzy logic system for automatic tuning of learning rate. Instead of choosing a fixed learning rate, the fuzzy logic system is used to dynamically adjust learning rate. The inputs of fuzzy logic system are ${\Delta}$ and $\bar{{\Delta}}$, and the output is the learning rate. In order to verify the effectiveness of the proposed method, we performed simulations on a N-parity problem, function approximation, and Arabic numerals classification. The results show that the proposed method has considerably improved the performance compared to the backpropagation, the backpropagation with momentum, and the Jacobs' delta-bar-delta.

A Study on a Sensitivity Processing Using a Fuzzy Reasoning Rule (퍼지 추론 규칙을 이용한 감성 처리에 관한 연구)

  • Kim, Kwang-Baek;Cho, Jae-Hyun
    • Journal of the Korea Society of Computer and Information
    • /
    • v.12 no.3
    • /
    • pp.1-8
    • /
    • 2007
  • In recent, the issues of sensitivity and psychology of human have received much attention from researchers and practitioners. In this paper. we analyze the information of color and location in order to detect the sensitivity and psychology by means of human vision on color space organization in a presented picture. After this process, we propose a method to determine psychology states through the space organization by using a fuzzy membership function which can be used to analyze direction information for the sensitivity. The proposed method is applied to the psychology states based on the space organization of Alschuler and Hattcick's method and to the space organization of Gunnwald's method. As a result, we present that the proposed method is very similar to a pattern classification of Alschuler and Grunwald.

  • PDF

Enhanced Backpropagation Algorithm by Auto-Tuning Method of Learning Rate using Fuzzy Control System (퍼지 제어 시스템을 이용한 학습률 자동 조정 방법에 의한 개선된 역전파 알고리즘)

  • 김광백;박충식
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.8 no.2
    • /
    • pp.464-470
    • /
    • 2004
  • We propose an enhanced backpropagation algorithm by auto-tuning of learning rate using fuzzy control system for performance improvement of backpropagation algorithm. We propose two methods, which improve local minima and loaming times problem. First, if absolute value of difference between target and actual output value is smaller than $\varepsilon$ or the same, we define it as correctness. And if bigger than $\varepsilon$, we define it as incorrectness. Second, instead of choosing a fixed learning rate, the proposed method is used to dynamically adjust learning rate using fuzzy control system. The inputs of fuzzy control system are number of correctness and incorrectness, and the output is the Loaming rate. For the evaluation of performance of the proposed method, we applied the XOR problem and numeral patterns classification The experimentation results showed that the proposed method has improved the performance compared to the conventional backpropagatiot the backpropagation with momentum, and the Jacob's delta-bar-delta method.

LOLE(Loss of Load Expctatiom) Evaluation using Fuzzy Set Theory (퍼지 집합 이론을 이용한 공급지장 기대치의 산정)

  • 심재홍;정현수;김진오
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.9
    • /
    • pp.1055-1063
    • /
    • 1999
  • This paper present a conceptual possibilistic approach using fuzzy set theory to manage the uncertainties in the given reliability input date of the practical power system. In this paper, an algorithm is introduced to calculate the possibilstic reliability indices according to the degree of uncertainty in the given data. The probability distribution function can be transformed into an appropriate possibilstic representation using the probability-Possibility Consistency principle(PPCP) algorithm. In this the algorithm, the transformation is performation by making a compromise between the transformation consistency and the human updating experience. Fuzzy classifcation theory is applied to reduced the number of load data. The fuzzy classification method determines the closeness of load data points by assigning them to various clusters and then determening the distance between the clusters. The IEEE-RTS with 32-generating units is used to demonstrate the capability of the proposed algorithm.

  • PDF

Fuzzy Rules Generation Using the LVQ (LVQ를 이용한 퍼지 규칙 생성)

  • Lee, Nam-Il;Jang, Gwang-Gyu;Im, Han-Gyu
    • The Transactions of the Korea Information Processing Society
    • /
    • v.6 no.4
    • /
    • pp.988-998
    • /
    • 1999
  • This paper is to investigate the method of reducing the number of fuzzy rules with the help of LVQ. a large number of training patterns usually leads to a large set of fuzzy rules that require a large computer memory and take a long time to perform classification. so, in order to solve these problems, it is necessary to study to minimize the number of fuzzy rules. However, so as to minimize the performance degradation resulting from the reduction of fuzzy rules, fuzzy rules are generated after training the high-quality initial reference pattern. Through the simulation, we confirm that the proposed method is very effective.

  • PDF