• Title/Summary/Keyword: fuzzy classification method

Search Result 296, Processing Time 0.024 seconds

A Study on Shell-Shaped Target Classification Using RCS and Fuzzy Classifier (RCS와 퍼지 구분기를 이용한 포탄 형태의 표적 식별기법에 대한 연구)

  • Lee, Seung-Jae;Jung, Sung-Jae;Kang, Byung-Soo;Na, Hyung-Gi;Kim, Hyun;Kim, Kyung-Tae
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.25 no.5
    • /
    • pp.576-584
    • /
    • 2014
  • In this paper, a study on the optimization of fuzzy classifier using radar cross section(RCS) values is presented to classify shell-shaped targets. Method of moments(MOM) is exploited to construct RCS database of generic shell-shaped targets in uniform angular intervals. Relative orientations are estimated from various flight scenarios of shell-shaped targets, and associated RCS values are interpolated from the generated RCS database with uniform angular intervals. Initial membership functions are determined using the interpolated RCS values, and particle swarm optimization(PSO) is utilized to optimize the membership functions of the fuzzy classifier in terms of probability of correct classification.

Object Detection using Fuzzy Adaboost (퍼지 Adaboost를 이용한 객체 검출)

  • Kim, Kisang;Choi, Hyung-Il
    • The Journal of the Korea Contents Association
    • /
    • v.16 no.5
    • /
    • pp.104-112
    • /
    • 2016
  • The Adaboost chooses a good set of features in rounds. On each round, it chooses the optimal feature and its threshold value by minimizing the weighted error of classification. The involved process of classification performs a hard decision. In this paper, we expand the process of classification to a soft fuzzy decision. We believe this expansion could allow some flexibility to the Adaboost algorithm as well as a good performance especially when the size of a training data set is not large enough. The typical Adaboost algorithm assigns a same weight to each training datum on the first round of a training process. We propose a new algorithm to assign different initial weights based on some statistical properties of involved features. In experimental results, we assess that the proposed method shows higher performance than the traditional one.

Analysis of Rock Slope Stability Based on Fuzzy Approximate Reasoning (퍼지근사추론법에 의한 암반사면의 안정해석)

  • 기완서;김삼석;주승완
    • The Journal of Engineering Geology
    • /
    • v.11 no.2
    • /
    • pp.153-161
    • /
    • 2001
  • The quantitative evaluation of the stereo graphic projection, the limit equilibrium analysis, the finite difference analysis, the distinct element methocI is a analytical evaluation using many variables. Through the reliability analysis by the point estimation technique, uncertainty of other variables that have an effect on the stability of the rock slo~ was considered. The organized evaluation method of the approximate reasoning concept and using a fuzzy language was developed to confer and analysis the failure factors in planning and constructing the rock slope. Considering the result of the an- alysis, it was demonstrated that stability of entire sections can be evaluated through reliability analysis of point estimation technique. The results of stability evaluation by Fuzzy Approximate Reasoning is generally identical with the results of other existirw; analyses. As mentioned above, general and organized evaluation of special qualities of rock slope is possible using RMR Classification, Stereo Graphic Projection, Limit Equilibriwn Analysis, Finite Difference Analysis, Distinct Element Method, Point Estimation Technique, and Fuzzy Approximate Reasoning.

  • PDF

Improved Algorithm of Hybrid c-Means Clustering for Supervised Classification of Remote Sensing Images (원격탐사 영상의 감독분류를 위한 개선된 하이브리드 c-Means 군집화 알고리즘)

  • Jeon, Young-Joon;Kim, Jin-Il
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.8 no.3
    • /
    • pp.185-191
    • /
    • 2007
  • Remote sensing images are multispectral image data collected from several band divided by wavelength ranges. The classification of remote sensing images is the method of classifying what has similar spectral characteristics together among each pixel composing an image as the important algorithm in this field. This paper presents a pattern classification method of remote sensing images by applying a possibilistic fuzzy c-means (PFCM) algorithm. The PFCM algorithm is a hybridization of a FCM algorithm, which adopts membership degree depending on the distance between data and the center of a certain cluster, combined with a PCM algorithm, which considers class typicality of the pattern sets. In this proposed method, we select the training data for each class and perform supervised classification using the PFCM algorithm with spectral signatures of the training data. The application of the PFCM algorithm is tested and verified by using Landsat TM and IKONOS remote sensing satellite images. As a result, the overall accuracy showed a better results than the FCM, PCM algorithm or conventional maximum likelihood classification(MLC) algorithm.

  • PDF

Classification and Tracking of Hand Region Using Deformable Template and Condensation (Deformable Template과 Condensation을 이용한 손 영역 분류와 추적)

  • Jeong, Hyeon-Seok;Joo, Young-Hoon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.8
    • /
    • pp.1477-1481
    • /
    • 2010
  • In this paper, we propose the classification and tracking method of the hand region using deformable template and condensation. To do this, first, we extract the hand region by using the fuzzy color filter and HCbCr color model. Second, we extract the edge of hand by applying the Canny edge algorithm. Third, we find the first template by calculating the conditional probability between the extracted edge and the model edge. If the accurate template of the first object is decided, the condensation algorithm tries to track it. Finally, we demonstrate the effectiveness and feasibility of the proposed method through some experiments.

Design of a Classifier Based on Supervised Learning Using Fuzzy Membership Function and Weighted Average (퍼지 소속도 함수와 가중치 평균을 이용한 지도 학습 기반 분류기 설계)

  • Woo, Young Woon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.4
    • /
    • pp.508-514
    • /
    • 2021
  • In this paper, to propose a classifier based on supervised learning, three types of fuzzy membership functions that determine the membership of each feature of classification data are proposed. In addition, the possibility of improving the classifier performance was suggested by using the average value calculation method used in the process of deriving the classification result using the average value of the membership degrees for each feature, not by using a simple arithmetic average, but by using a weighted average using various weights. To experiment with the proposed methods, three standard data sets were used: Iris, Ecoli, and Yeast. As a result of the experiment, it was confirmed that evenly excellent classification performance can be obtained for data sets of different characteristics. It was confirmed that better classification performance is possible through improvement of fuzzy membership functions and the weighted average methods.

A Weighted FMM Neural Network and Feature Analysis Technique for Pattern Classification (가중치를 갖는 FMM신경망과 패턴분류를 위한 특징분석 기법)

  • Kim Ho-Joon;Yang Hyun-Seung
    • Journal of KIISE:Software and Applications
    • /
    • v.32 no.1
    • /
    • pp.1-9
    • /
    • 2005
  • In this paper we propose a modified fuzzy min-max neural network model for pattern classification and discuss the usefulness of the model. We define a new hypercube membership function which has a weight factor to each of the feature within a hyperbox. The weight factor makes it possible to consider the degree of relevance of each feature to a class during the classification process. Based on the proposed model, a knowledge extraction method is presented. In this method, a list of relevant features for a given class is extracted from the trained network using the hyperbox membership functions and connection weights. Ft)r this purpose we define a Relevance Factor that represents a degree of relevance of a feature to the given class and a similarity measure between fuzzy membership functions of the hyperboxes. Experimental results for the proposed methods and discussions are presented for the evaluation of the effectiveness and feasibility of the proposed methods.

An Image Contrast Enhancement Technique Using Integrated Adaptive Fuzzy Clustering Model (IAFC 모델을 이용한 영상 대비 향상 기법)

  • 이금분;김용수
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2001.12a
    • /
    • pp.279-282
    • /
    • 2001
  • This paper presents an image contrast enhancement technique for improving the low contrast images using the improved IAFC(Integrated Adaptive Fuzzy Clustering) Model. The low pictorial information of a low contrast image is due to the vagueness or fuzziness of the multivalued levels of brightness rather than randomness. Fuzzy image processing has three main stages, namely, image fuzzification, modification of membership values, and image defuzzification. Using a new model of automatic crossover point selection, optimal crossover point is selected automatically. The problem of crossover point selection can be considered as the two-category classification problem. The improved MEC can classify the image into two classes with unsupervised teaming rule. The proposed method is applied to some experimental images with 256 gray levels and the results are compared with those of the histogram equalization technique. We utilized the index of fuzziness as a measure of image quality. The results show that the proposed method is better than the histogram equalization technique.

  • PDF

Neuro-Fuzzy System and Its Application Using CART Algorithm and Hybrid Parameter Learning (CART 알고리즘과 하이브리드 학습을 통한 뉴로-퍼지 시스템과 응용)

  • Oh, B.K.;Kwak, K.C.;Ryu, J.W.
    • Proceedings of the KIEE Conference
    • /
    • 1998.07b
    • /
    • pp.578-580
    • /
    • 1998
  • The paper presents an approach to the structure identification based on the CART (Classification And Regression Tree) algorithm and to the parameter identification by hybrid learning method in neuro-fuzzy system. By using the CART algorithm, the proposed method can roughly estimate the numbers of membership function and fuzzy rule using the centers of decision regions. Then the parameter identification is carried out by the hybrid learning scheme using BP (Back-propagation) and RLSE (Recursive Least Square Estimation) from the numerical data. Finally, we will show it's usefulness for fuzzy modeling to truck backer upper control.

  • PDF

Damage identification for high-speed railway truss arch bridge using fuzzy clustering analysis

  • Cao, Bao-Ya;Ding, You-Liang;Zhao, Han-Wei;Song, Yong-Sheng
    • Structural Monitoring and Maintenance
    • /
    • v.3 no.4
    • /
    • pp.315-333
    • /
    • 2016
  • This study aims to perform damage identification for Da-Sheng-Guan (DSG) high-speed railway truss arch bridge using fuzzy clustering analysis. Firstly, structural health monitoring (SHM) system is established for the DSG Bridge. Long-term field monitoring strain data in 8 different cases caused by high-speed trains are taken as classification reference for other unknown cases. And finite element model (FEM) of DSG Bridge is established to simulate damage cases of the bridge. Then, effectiveness of one fuzzy clustering analysis method named transitive closure method and FEM results are verified using the monitoring strain data. Three standardization methods at the first step of fuzzy clustering transitive closure method are compared: extreme difference method, maximum method and non-standard method. At last, the fuzzy clustering method is taken to identify damage with different degrees and different locations. The results show that: non-standard method is the best for the data with the same dimension at the first step of fuzzy clustering analysis. Clustering result is the best when 8 carriage and 16 carriage train in the same line are in a category. For DSG Bridge, the damage is identified when the strain mode change caused by damage is more significant than it caused by different carriages. The corresponding critical damage degree called damage threshold varies with damage location and reduces with the increase of damage locations.