• Title/Summary/Keyword: fuzzy classification method

Search Result 296, Processing Time 0.03 seconds

On Fuzzy Methods to Classify Quality Attributes in Kano Model (카노모델에서 품질요소 분류를 위한 퍼지기법 연구)

  • Kim, Seong-Jun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.26 no.6
    • /
    • pp.439-444
    • /
    • 2016
  • The definition of quality continues to evolve. In recent years, there has been growing interest in how to satisfy customers' potential needs with an emphasis on customer-oriented quality. Two-dimensional quality proposed by Kano provides a useful framework for discovering quality attributes critical to customer satisfaction and it is widely employed for product and service development. In Kano model, quality attributes are classified into attractive, one-dimensional, must-be, indifferent, and reverse ones. Finding attractive elements among them is important for achieving customer satisfaction effectively. However, Kano's classification method has limitations in dealing with customers' ambiguous and complex ideas. The customer response itself includes uncertainty and incompleteness. To overcome this problem, fuzzy methods are incorporated with Kano's classification in this paper. According to numerical comparisons, it is shown that the fuzzy Kano method is useful for accommodating various response of customer and is helpful to identify potential needs.

Hand Gesture Recognition Using an Infrared Proximity Sensor Array

  • Batchuluun, Ganbayar;Odgerel, Bayanmunkh;Lee, Chang Hoon
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.15 no.3
    • /
    • pp.186-191
    • /
    • 2015
  • Hand gesture is the most common tool used to interact with and control various electronic devices. In this paper, we propose a novel hand gesture recognition method using fuzzy logic based classification with a new type of sensor array. In some cases, feature patterns of hand gesture signals cannot be uniquely distinguished and recognized when people perform the same gesture in different ways. Moreover, differences in the hand shape and skeletal articulation of the arm influence to the process. Manifold features were extracted, and efficient features, which make gestures distinguishable, were selected. However, there exist similar feature patterns across different hand gestures, and fuzzy logic is applied to classify them. Fuzzy rules are defined based on the many feature patterns of the input signal. An adaptive neural fuzzy inference system was used to generate fuzzy rules automatically for classifying hand gestures using low number of feature patterns as input. In addition, emotion expression was conducted after the hand gesture recognition for resultant human-robot interaction. Our proposed method was tested with many hand gesture datasets and validated with different evaluation metrics. Experimental results show that our method detects more hand gestures as compared to the other existing methods with robust hand gesture recognition and corresponding emotion expressions, in real time.

Automatically Constructed Fuzzy Rule-Based Pattern Classification Systems for Fault Diagnosis (자동 구축 퍼지 규칙기반 패턴 인식 시스템에 의한 고장진단 시스템의 구현)

  • Hong, Yoon-Kwang;Cho, Seong-Won
    • Proceedings of the KIEE Conference
    • /
    • 1995.07b
    • /
    • pp.956-958
    • /
    • 1995
  • This paper presents the automatic construction of fuzzy rule-based systems for diagnosing the faults of complex systems. Generally, fuzzy systems work well when we can use expert's experience to articulate fuzzy IF-THEN rules and memberships for fuzzy sets. When we cannot do this, we should generate the fuzzy rules and membership functions for fuzzy sets directly from experimental data. In this paper, we propose a new method on how to extract fuzzy sets and fuzzy rules. We also introduce an efficient fine-tunning algorithm of the parameters of membership functions.

  • PDF

A Leveling and Similarity Measure using Extended AHP of Fuzzy Term in Information System (정보시스템에서 퍼지용어의 확장된 AHP를 사용한 레벨화와 유사성 측정)

  • Ryu, Kyung-Hyun;Chung, Hwan-Mook
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.19 no.2
    • /
    • pp.212-217
    • /
    • 2009
  • There are rule-based learning method and statistic based learning method and so on which represent learning method for hierarchy relation between domain term. In this paper, we propose to leveling and similarity measure using the extended AHP of fuzzy term in Information system. In the proposed method, we extract fuzzy term in document and categorize ontology structure about it and level priority of fuzzy term using the extended AHP for specificity of fuzzy term. the extended AHP integrates multiple decision-maker for weighted value and relative importance of fuzzy term. and compute semantic similarity of fuzzy term using min operation of fuzzy set, dice's coefficient and Min+dice's coefficient method. and determine final alternative fuzzy term. after that compare with three similarity measure. we can see the fact that the proposed method is more definite than classification performance of the conventional methods and will apply in Natural language processing field.

Fuaay Decision Tree Induction to Obliquely Partitioning a Feature Space (특징공간을 사선 분할하는 퍼지 결정트리 유도)

  • Lee, Woo-Hang;Lee, Keon-Myung
    • Journal of KIISE:Software and Applications
    • /
    • v.29 no.3
    • /
    • pp.156-166
    • /
    • 2002
  • Decision tree induction is a kind of useful machine learning approach for extracting classification rules from a set of feature-based examples. According to the partitioning style of the feature space, decision trees are categorized into univariate decision trees and multivariate decision trees. Due to observation error, uncertainty, subjective judgment, and so on, real-world data are prone to contain some errors in their feature values. For the purpose of making decision trees robust against such errors, there have been various trials to incorporate fuzzy techniques into decision tree construction. Several researches hove been done on incorporating fuzzy techniques into univariate decision trees. However, for multivariate decision trees, few research has been done in the line of such study. This paper proposes a fuzzy decision tree induction method that builds fuzzy multivariate decision trees named fuzzy oblique decision trees, To show the effectiveness of the proposed method, it also presents some experimental results.

Pruning and Learning Fuzzy Rule-Based Classifier

  • Kim, Do-Wan;Park, Jin-Bae;Joo, Young-Hoon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.663-667
    • /
    • 2004
  • This paper presents new pruning and learning methods for the fuzzy rule-based classifier. The structure of the proposed classifier is framed from the fuzzy sets in the premise part of the rule and the Bayesian classifier in the consequent part. For the simplicity of the model structure, the unnecessary features for each fuzzy rule are eliminated through the iterative pruning algorithm. The quality of the feature is measured by the proposed correctness method, which is defined as the ratio of the fuzzy values for a set of the feature values on the decision region to one for all feature values. For the improvement of the classification performance, the parameters of the proposed classifier are finely adjusted by using the gradient descent method so that the misclassified feature vectors are correctly re-categorized. The cost function is determined as the squared-error between the classifier output for the correct class and the sum of the maximum output for the rest and a positive scalar. Then, the learning rules are derived from forming the gradient. Finally, the fuzzy rule-based classifier is tested on two data sets and is found to demonstrate an excellent performance.

  • PDF

Classification of Music Data using Fuzzy c-Means with Divergence Kernel (분산커널 기반의 퍼지 c-평균을 이용한 음악 데이터의 장르 분류)

  • Park, Dong-Chul
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.46 no.3
    • /
    • pp.1-7
    • /
    • 2009
  • An approach for the classification of music genres using a Fuzzy c-Means(FcM) with divergence-based kernel is proposed and presented in this paper. The proposed model utilizes the mean and covariance information of feature vectors extracted from music data and modelled by Gaussian Probability Density Function (GPDF). Furthermore, since the classifier utilizes a kernel method that can convert a complicated nonlinear classification boundary to a simpler linear one, he classifier can improve its classification accuracy over conventional algorithms. Experiments and results on collected music data sets demonstrate hat the proposed classification scheme outperforms conventional algorithms including FcM and SOM 17.73%-21.84% on average in terms of classification accuracy.

Optimal EEG Locations for EEG Feature Extraction with Application to User's Intension using a Robust Neuro-Fuzzy System in BCI

  • Lee, Chang Young;Aliyu, Ibrahim;Lim, Chang Gyoon
    • Journal of Integrative Natural Science
    • /
    • v.11 no.4
    • /
    • pp.167-183
    • /
    • 2018
  • Electroencephalogram (EEG) recording provides a new way to support human-machine communication. It gives us an opportunity to analyze the neuro-dynamics of human cognition. Machine learning is a powerful for the EEG classification. In addition, machine learning can compensate for high variability of EEG when analyzing data in real time. However, the optimal EEG electrode location must be prioritized in order to extract the most relevant features from brain wave data. In this paper, we propose an intelligent system model for the extraction of EEG data by training the optimal electrode location of EEG in a specific problem. The proposed system is basically a fuzzy system and uses a neural network structurally. The fuzzy clustering method is used to determine the optimal number of fuzzy rules using the features extracted from the EEG data. The parameters and weight values found in the process of determining the number of rules determined here must be tuned for optimization in the learning process. Genetic algorithms are used to obtain optimized parameters. We present useful results by using optimal rule numbers and non - symmetric membership function using EEG data for four movements with the right arm through various experiments.

Classification of Arrhythmia Based on Discrete Wavelet Transform and Rough Set Theory

  • Kim, M.J.;J.-S. Han;Park, K.H.;W.C. Bang;Z. Zenn Bien
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.28.5-28
    • /
    • 2001
  • This paper investigates a classification method of the electrocardiogram (ECG) into different disease categories. The features for the classification of the ECG are the coefficients of the discrete wavelet transform (DWT) of ECG signals. The coefficients are calculated with Haar wavelet, and after DWT we can get 64 coefficients. Each coefficient has morphological information and they may be good features when conventional time-domain features are not available. Since all of them are not meaningful, it is needed to reduce the size of meaningful coefficients set. The distributions of each coefficient can be the rules to classify ECG signal. The optimally reduced feature set is obtained by fuzzy c-means algorithm and rough set theory. First, the each coefficient is clustered by fuzzy c-means algorithm and the clustered ...

  • PDF

Robust Skin Area Detection Method in Color Distorted Images (색 왜곡 영상에서의 강건한 피부영역 탐지 방법)

  • Hwang, Daedong;Lee, Keunsoo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.7
    • /
    • pp.350-356
    • /
    • 2017
  • With increasing attention to real-time body detection, active research is being conducted on human body detection based on skin color. Despite this, most existing skin detection methods utilize static skin color models and have detection rates in images, in which colors are distorted. This study proposed a method of detecting the skin region using a fuzzy classification of the gradient map, saturation, and Cb and Cr in the YCbCr space. The proposed method, first, creates a gradient map, followed by a saturation map, CbCR map, fuzzy classification, and skin region binarization in that order. The focus of this method is to rigorously detect human skin regardless of the lighting, race, age, and individual differences, using features other than color. On the other hand,the borders between these features and non-skin regions are unclear. To solve this problem, the membership functions were defined by analyzing the relationship between the gradient, saturation, and color features and generate 108 fuzzy rules. The detection accuracy of the proposed method was 86.35%, which is 2~5% better than the conventional method.