Journal of information and communication convergence engineering
/
제6권2호
/
pp.204-206
/
2008
In this paper, we proposed the recognition method that automatically extracts cracks from a surface image acquired by a digital camera and recognizes the directions (horizontal, vertical, -45 degree, and 45 degree) of cracks using the fuzzy single layer perceptron. We compensate an effect of light on a concrete surface image by applying the closing operation, which is one of the morphological techniques, extract the edges of cracks by Sobel masking, and binarize the image by applying the iterated binarization technique. Two times of noise reduction are applied to the binary image for effective noise elimination. After the specific regions of cracks are automatically extracted from the preprocessed image by applying Glassfire labeling algorithm to the extracted crack image, the cracks of the specific region are enlarged or reduced to $30{\times}30$ pixels and then used as input patterns to the fuzzy single layer perceptron. The experiments using concrete crack images showed that the cracks in the concrete crack images were effectively extracted and the fuzzy single layer perceptron was effective in the recognition of the extracted cracks directions.
This Paper presents an interval type-2 fuzzy perceptron algorithm that is an extension of the type-1 fuzzy perceptron algorithm proposed in [1]. In our proposed method, the membership values for each Pattern vector are extended as interval type-2 fuzzy memberships by assigning uncertainty to the type-1 memberships. By doing so, the decision boundary obtained by interval type-2 fuzzy memberships can converge to a more desirable location than the boundary obtained by crisp and type-1 fuzzy perceptron methods. Experimental results are given to show the effectiveness of our method
최근에 퍼지 이론을 인공 신경망에 접목하여 개선된 성능을 보이려는 경향이 많다. Goh는 퍼지단층 퍼셉트론 알고리즘과 일반적인 델타 규칙(Generalized delta rule)에 기반한 개선된 퍼지 퍼셉트론을 제안하여 Exclusive-OR(XOR) 문제 등을 해결하였다 그러나 이 방법은 계산량의 증가와 복잡한 영상인식에 적응하기에는 어려움이 있다. 논문에서는 동적 역치조정에 의한 개선된 퍼지 단층 퍼셉트론을 제안한다. 제안된 방법은 페턴인식의 벤치마크로 사용되는 XOR문제에 적용된다. 또한 영상 응용영역으로서 디지털 영상의 인식에 적용한다. 실험결과에서 항상 수렴하지는 않지만 그러나 제안된 모델은 학습시간의 개선과 높은 수렴율을 보였다.
패턴 인식에서 선형분류가능한 경계면을 찾아 패턴을 분류하는 방법 중 가장 기본적인 방법은 퍼셉트론이라고 볼 수 있다. 하지만 선형분류불가능한 패턴에 대해서는 유용한 결과를 보여주지 못하였다. 먼저 제안된 퍼지 퍼셉트론은 베타영역 설정에 의해 수렴하지 못하는 특성을 보완하였다. 그러나 패턴의 순수한 전형성을 고려해 주지 못하는 단점이 있다. 이에 Crisp의 선형분류 특성과 퍼지의 수렴특성을 합성하고자 Possibilistic 퍼셉트론을 제시한다.
본 논문은 논문[1]에 제시된 기존의 퍼지 퍼셉트론 방법을 확장시킨 interval 제2종 퍼지 퍼셉트론을 제시한다. 본 논문에 제시된 방법에서는, 각 패턴벡터에 할당된 멤버쉽에 불확실성을 할당하여, interval 제2종 퍼지 집합으로 확장한다. 이러 한 방법에 의해 얻어진 두 개의 클래스 사이의 경계면은 기존의 crisp이나 퍼지 방법을 사용한 퍼셉트론에 비해 더 바람직한 위치로 알고리즘을 수렴시킬 수 있다. 여러 가지 실험 결과를 통해 우리는 리의 방법의 유용성을 보여줄 것이다.
기존의 단층 퍼셉트론은 출력 노드가 선형 분리 가능한 패턴들만을 분류할 수 있고 XOR과 같은 비선형 문제에 대해서는 분류할 수 없는 단점이 있다. 퍼지 단층 퍼셉트론은 퍼지 소속 함수(Fuzzy Membership Function)를 적용하여 단층 구조로 XOR 문제와 같은 고전적인 문제를 개선하였다. 그러나 퍼지 단층 퍼셉트론은 기존의 단층 퍼셉트론과 마찬가지로 결정 경계선이 진동하는 경우가 생기며 초기 가중치의 범위와 학습률에 따라 수렴성이 매우 낮아지는 단점이 있다. 따라서 본 논문에서는 바이어스항을 도입하여 결정 경계선이 진동하는 것을 방지하여 수렴성을 개선시키고 선형 활성화 함수를 제안하고 학습률과 모멘텀 개념을 도입 한 개선된 델타규칙을 적용함으로써 학습 시간을 단축시키는 개선된 퍼지 단층 퍼셉트론 알고리즘을 제안한다. 제안된 방법과 퍼지 단층 퍼셉트론간의 학습 성능을 분석하기 위하여 인공 신경망에서 벤치마크로 사용되는 XOR 문제와 패턴 분류에 적용하여 Epoch 수와 수렴성을 비교한 결과, 제안된 방법이 기존의 퍼지 단층 퍼셉트론보다 학습 시간이 적게 소요되고 수렴성이 개선된 것을 확인하였다.
본 논문은 기존의 퍼지 단층 퍼셉트론 알고리즘의 학습 시간과 수렴성을 개선하기 위해 인간 신경계의 생리학적 뉴런 구조를 분석하며 퍼지 논리를 이용한 새로운 뉴런 구조를 제시하고, 이를 바탕으로 생리학적 퍼지 단층 퍼셉트론(P-FLSP: Physiological Fuzzy Single Layer Perceptron)에 대한 학습 모형과 학습 알고리즘을 제안한다. 제안된 학습 알고리즘의 성능을 평가하기 위해 Exclusive OR 문제, 3-bit parity 문제 그리고 차량 번호판 인식 문제 등에 적용하여 피곤의 피지 단층 퍼셉트론 알고리즘과 성능을 비교, 분석하였다. 실험 결과에서는 제안된 학습 알고리즘(P-FSLP)이 기존의 퍼지 단층 학습 알고리즘보다 지역 최소화에 빠질 가능성이 감소하였으며 학습 시간과 수렴성도 개선되었을 뿐만 아니라, 영상 인식등에 대한 응용 가능성도 제시되었다.
A Fuzzy Hybrid-Multilayer Perceptron (FH-MLP) Structure is proposed in this paper. proposed FH-MLP is not a fixed architecture. that is to say. the number of layers and the number of nodes in each layer of FH-MLP can be generated to adapt to the changing environment. FH-MLP consists of two parts. one is fuzzy nodes which each node is operated as a small fuzzy system with fuzzy implication rules. and its fuzzy system operates with Gaussian or Triangular membership functions in premise part and constants or regression polynomial equation in consequence part. the other is polynomial nodes which several types of high-order polynomial such as linear. quadratic. and cubic form are used and is connected as various kinds of multi-variable inputs. To demonstrate the effectiveness of the proposed method. time series data for gas furnace process has been applied.
패턴 인식에서 선형 분류 가능한 경계면을 찾아 패턴을 분류하는 방법 중 가장 기본적인 방법은 퍼셉트론이라고 볼 수 있다. 하지만 선형 분류 불가능한 패턴에 대해서는 유용한 결과를 보여주지 못하였다. 먼저 제안된 퍼지 퍼셉트론은 베타영역 설정에 의해 수렴하지 못하는 특성을 보완하였다. 그러나 패턴의 순수한 전형성을 고려해 주지 못하는 단점이 있다. 이에 Crisp의 선형분류 특성과 퍼지의. 수렴특성을 합성하고자 Possibilistic 퍼셉트론을 제시한다.
We propose a new category of hybrid multi-layer neural networks with hetero nodes such as Fuzzy Set based Polynomial Neurons (FSPNs) and Polynomial Neurons (PNs). These networks are based on a genetically optimized multi-layer perceptron. We develop a comprehensive design methodology involving mechanisms of genetic optimization and genetic algorithms, in particular. The augmented genetically optimized HFPNN (namely gHFPNN) results in a structurally optimized structure and comes with a higher level of flexibility in comparison to the one we encounter in the conventional HFPNN. The GA-based design procedure being applied at each layer of HFPNN leads to the selection of preferred nodes (FPNs or PNs) available within the HFPNN. In the sequel, two general optimization mechanisms are explored. First, the structural optimization is realized via GAs whereas the ensuing detailed parametric optimization is carried out in the setting of a standard least square method-based learning. The performance of the gHFPNNs quantified through experimentation where we use a number of modeling benchmarks-synthetic and experimental data already experimented with in fuzzy or neurofuzzy modeling.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.