• 제목/요약/키워드: fuzzy PI+D controller

검색결과 27건 처리시간 0.03초

Dialogical design of fuzzy controller using rough grasp of process property

  • Ishimaru, Naoyuki;Ishimoto, Tutomu;Akizuki, Kageo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1992년도 한국자동제어학술회의논문집(국제학술편); KOEX, Seoul; 19-21 Oct. 1992
    • /
    • pp.265-271
    • /
    • 1992
  • It is the purpose of this paper to present a dialogical designing method for control system using a rough grasp of the unknown process property. We deal with a single-input single-output feedback control system with a fuzzy controller. The process property is roughly estimated by the step response, and the fuzzy controller is interactively modified according to the operator's requests. The modifying rules mainly derived from computer simulation are useful for almost every process, such as an unstable process and a non-minimum phase process. The fuzzy controller is tuned by taking notice of four characteristics of the step response: (1) rising time, (2) overshoot, (3) amplitude and (4) period of vibration. The tuning position of the controller is fourfold: (1) antecedent gain factor GE or GCE, (2) consequent gain factor GDU, (3) arrangement of the antecedent fuzzy labels and (4) arrangement of the control rules. The rules give an instance to the respective items of the controller in an effective order. The modified fuzzy PI controller realizes a good response of a stable process. However, because the GDU tuning becomes difficult for the unstable process, it is necessary to evaluate the stability of the process from the initial step response. The fuzzy PI controller is applied to the process whose initial step response converges with GDU tuning. The fuzzy PI controller with modified sampling time is applied to the process whose step response converges under the repeated application of the GDU tuning. The fuzzy PD controller is applied to the process whose step response never converges by the GDU tuning.

  • PDF

화력 발전소 드럼수위의 퍼지-PI 캐스케이드 제어 (Fuzzy-PI Cascade Control of Drum Level of Boiler in Thermal Power Plan)

  • 변승현;조지용;김동욱
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1998년도 하계학술대회 논문집 B
    • /
    • pp.458-460
    • /
    • 1998
  • The drum level control is initiated by 1-element manual control, and then the control mode is changed to 1-element automatic control mode. Finally, the drum level control is changed to 3-element automatic control mode by the logic based on pre-defined threshold of main steam flow. In terms of plant automation, the automatic 1-element control mode is required from the start-up of boiler. In this paper, the fuzzy controller is adopted for automatic 1-element control of drum level from start-up. It is suggested that the fuzzy controller is used in 1-element control, and the fuzzy-PI cascade controller is used in 3-element control. Finally, the validity of suggested control scheme is shown via simulation.

  • PDF

퍼지 PI+D 제어기를 이용한 설계변수와 이득의 자기동조에 관한 연구 (A Study on the self-tuning of the design variables and gains using Fuzzy PI+D Controller)

  • 장철수;최정원;오영석;채석
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2006년도 추계학술대회 학술발표 논문집 제16권 제2호
    • /
    • pp.395-407
    • /
    • 2006
  • 본 논문에서는 설계변수와 제어기 이득의 자기 동조를 사용하는 PI+D 제어기 설계에 대하여 기술한다. 사용된 퍼지 PI+D 제어기는 일반적인 연속 시간 선형 PI+D 제어기를 근사화하여 사용하였고, 퍼지화는 퍼지싱글톤으로, 비퍼지화는 간략화된 무게중심법을 사용하였다. 제안된 제어기는 제어대상이 비선형일 때 자기 동조 성능이 개선된다. 퍼지 PI+D 제어기가 적용되면, 퍼지추정 결과는 분리된 퍼지 변수로서 다른 작용 성분으로 계산되고, 그 결과는 설계변수에 해당하는 함수의 형태로 결정되어 제어이득을 결정한다. 따라서 제안된 방법은 빠른 속도 추정의 성능을 가지며, 퍼지 입력변수의 증가에도 쉽게 적용될 수 있고, 재생 오차를 줄이는 이점을 가진다. 이 제어기는 설계변수와 제어기 이득의 사용으로 보다 높은 효율성과 개선점을 가지고 있다.

  • PDF

퍼지-뉴럴 제어기를 이용한 유도전동기 속도 제어 (Speed Control of an Induction Moter using Fuzzy-Neural Controller)

  • 최성대;김낙교
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제55권10호
    • /
    • pp.443-445
    • /
    • 2006
  • Generally PI controller is used to control the speed of an induction motor. It has the good performance of speed control in case of adjusting the control parameters. But it occurred the problem to change the control parameters in the change of operation condition. In order to solve this problem, Fuzzy control or Artificial neural network is introduced in the speed control of an induction motor. However, Fuzzy control have the problems as the difficulties to change the membership function and fuzzy rule and the remaining error Also Neural network has the problem as the difficulties to analyze the behavior of inner part. Therefore, the study on the combination of two controller is proceeded. In this paper, Fuzzy-neural controller to make up these controllers in parallel is proposed and the speed control of an induction motor is performed using the proposed controller Through the experiment, the fast response and good stability of the proposed speed controller is proved.

이동 로봇의 퍼지 재점착 제어기 설계 (Design of a Fuzzy Re-adhesion Controller for Wheeled Robot)

  • 권선구;허욱렬;김진환
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제54권1호
    • /
    • pp.48-55
    • /
    • 2005
  • Mobility of an indoor wheeled robot is affected by adhesion force that is related to various floor conditions. When the adhesion force between driving wheels and floor decreases suddenly, the robot begins slip. In order to overcome this slip problem, optimal slip velocity must be decided for stable movement of wheeled robot. First of all, this paper shows that conventional PI control can not be applied to a wheeled robot of the light weight. Secondly, proposed fuzzy logic is applied to the Takagi-Sugeno model for the configuration of fuzzy sets. For the design of Takagi-Sugeno model and fuzzy rule, proposed algorithm uses FCM(Fuzzy c-mean clustering method) algorithm. In additionally, this algorithm adjusts the driving torque for restraining re-slip. The proposed fuzzy logic controller(FLC) is pretty useful with prevention of the slip phenomena for the controller performance in the re-adhesion control strategy, These procedures are implemented using a Pioneer 2-DXE wheeled robot parameter.

SC-FNPI 제어기를 이용한 IPMSM 드라이브의 효율최적화 제어 (Efficiency Optimization Control of IPMSM drive using SC-FNPI Controller)

  • 고재섭;정동화
    • 조명전기설비학회논문지
    • /
    • 제26권12호
    • /
    • pp.9-20
    • /
    • 2012
  • This paper proposes the efficiency optimization control of interior permanent magnet synchronous motor(IPMSM) drive using series connected-fuzzy neural network PI(SC-FNPI) controller. The PI controller is generally used to control IPMSM drive in industrial field. However, the PI controller has problem which is falling control performance about parameter variation such as command speed, load torque and inertia due to fixed gain of PI controller. Therefore, to improve performance of PI controller, this paper proposes SC-FNPI controller adjusted input of PI controller by FNN controller according to operating conditions. Also, this paper proposes efficiency optimization control which is improving efficiency with minimize loss. The SC-FNPI controller proposed in this paper is compared control performance with conventional FNN and PI controller about command speed, load torque and inertia variation. And the efficiency optimization control is compared with $i_d=0$ control about loss and efficiency. The SC-FNPI controller proposed in this paper shows more excellent control performance for rising time, overshoot and steady-state error. Also efficiency optimization control is increased efficiency by reducing loss.

Robust Fuzzy Logic Current and Speed Controllers for Field-Oriented Induction Motor Drive

  • El-Sousy, Fayez F.M.;Nashed, Maged N.F.
    • Journal of Power Electronics
    • /
    • 제3권2호
    • /
    • pp.115-123
    • /
    • 2003
  • This paper presents analysis, design and simulation for the indirect field orientation control (IFOC) of induction machine drive system. The dynamic performance of the IFOC under nominal and detuned parameters of the induction machine is established. A conventional proportional plus integral-derivative (PI-D) two-degree-of-freedom controller (2DOFC) is designed and analysed for an ideal IFOC induction machine drive at nominal parameters with the desired dynamic response. Varying the induction machine parameters causes a degredation in the dynamic response for disturbance rejection and tracking performance with PI-D 2DOF speed controller. Therefore, conventional controllers can nut meet a wide range of speed tracking performance under parameter variations. To achieve high- dynamic performance, a proposed robust fuzzy logic controllers (RFLC) for d-axis rotor flux, d-q axis stator currents and rotor speed have been designed and analysed. These controllers provide robust tracking and disturbance rejection performance when detuning occurres and improve the dynamic behavior. The proposed REL controllers provide a fast and accurate dynamic response in tracking and disturbance rejection characteristics under parameter variations. Computer simulation results demonstrate the effectiveness of the proposed REL controllers and a robust performance is obtained fur IFOC induction machine drive system.

안정 적응 퍼지 제어기를 이용한 박판 주조 공정에서의 용강 높이 제어 (Molten steel level control of strip casting process using stable adaptive fuzzy control scheme)

  • 주문갑;이대성;김윤하
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2001년도 하계학술대회 논문집 D
    • /
    • pp.1929-1931
    • /
    • 2001
  • An adaptive fuzzy logic controller to regulate molten steel level in the strip casting process is presented, where parameters of fuzzy controllers are adapted stably by using Lyapunov-stability theory and a switching controller is used together to deal with the approximation error of fuzzy logic system. The level error is proven to converge to zero asymptotically. In the simulation, the clogging/unclogging of a stopper nozzle is considered and overcome by the proposed controller. Robustness to uncertainty is shown to be superior to conventional PI controller.

  • PDF

무인반송 차량시스템의 정밀 추적제어 (Precise Tracking control of Automated Guided Vehicle System)

  • 신두진;허욱열
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제50권7호
    • /
    • pp.313-317
    • /
    • 2001
  • This paper proposed a fuzzy logic cross coupled controller which can enhance the path tracking performance of optically guided AGV(Automated Guided Vehicle). The AGV follows the guide path, it cannot be avoid the deviation from the path due to the inevitable error and the deviation must be corrected. Optically guided AGV used in industrial area is controlled by On-Off controller generally, the experimental AGV has three optical sensors in front body. In this structure, we could not know the leaving distance accurately and steering angle from the guided line, so AGV could not be controlled properly with conventional controller in the case of increasing or decreasing velocity. If we mount additional sensors the AGV, we could know the leaving distance and steering angle from the guided line and proper error compensating methode can be applied. But because cost of sensors are high, the cost of total system is increasing. So, in this paper, to improve the tracking performance of AGV which has the minimum number of sensors and fuzzy logic cross coupled controller is proposed. Some simulations and experimental results are presented to illustrate the performance of the proposed controller.

  • PDF

퍼지 제어기를 이용한 영구자석 교류전동기의 센서리스 속도제어 (Sensorless Speed Control of Permanent Magnet AC Motor Using Fuzzy Logic Controller)

  • 최성대;고봉운;김낙교
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제53권6호
    • /
    • pp.389-394
    • /
    • 2004
  • This paper proposes a speed estimation method using FLC(Fuzzy Logic Controller) in order to realize the speed control of PMAM(Permanent Magnet AC Motor) with no speed sensor. This method uses FLC as a adaptive laws of MRAS(Model Reference Adaptive System) and estimates the rotor speed of PMAM with a difference between the reference model and the adjustable model. Speed control is performed by PI controller with the estimated speed. The experiment is executed to verify the propriety and the effectiveness of the proposed system.