• Title/Summary/Keyword: fuzzy K means

Search Result 430, Processing Time 0.026 seconds

Adjustment of the Mean Field Rainfall Bias by Clustering Technique (레이더 자료의 군집화를 통한 Mean Field Rainfall Bias의 보정)

  • Kim, Young-Il;Kim, Tae-Soon;Heo, Jun-Haeng
    • Journal of Korea Water Resources Association
    • /
    • v.42 no.8
    • /
    • pp.659-671
    • /
    • 2009
  • Fuzzy c-means clustering technique is applied to improve the accuracy of G/R ratio used for rainfall estimation by radar reflectivity. G/R ratio is computed by the ground rainfall records at AWS(Automatic Weather System) sites to the radar estimated rainfall from the reflectivity of Kwangduck Mt. radar station with 100km effective range. G/R ratio is calculated by two methods: the first one uses a single G/R ratio for the entire effective range and the other two different G/R ratio for two regions that is formed by clustering analysis, and absolute relative error and root mean squared error are employed for evaluating the accuracy of radar rainfall estimation from two G/R ratios. As a result, the radar rainfall estimated by two different G/R ratio from clustering analysis is more accurate than that by a single G/R ratio for the entire range.

Design of Very Short-term Precipitation Forecasting Classifier Based on Polynomial Radial Basis Function Neural Networks for the Effective Extraction of Predictive Factors (예보인자의 효과적 추출을 위한 다항식 방사형 기저 함수 신경회로망 기반 초단기 강수예측 분류기의 설계)

  • Kim, Hyun-Myung;Oh, Sung-Kwun;Kim, Hyun-Ki
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.1
    • /
    • pp.128-135
    • /
    • 2015
  • In this study, we develop the very short-term precipitation forecasting model as well as classifier based on polynomial radial basis function neural networks by using AWS(Automatic Weather Station) and KLAPS(Korea Local Analysis and Prediction System) meteorological data. The polynomial-based radial basis function neural networks is designed to realize precipitation forecasting model as well as classifier. The structure of the proposed RBFNNs consists of three modules such as condition, conclusion, and inference phase. The input space of the condition phase is divided by using Fuzzy C-means(FCM) and the local area of the conclusion phase is represented as four types of polynomial functions. The coefficients of connection weights are estimated by weighted least square estimation(WLSE) for modeling as well as least square estimation(LSE) method for classifier. The final output of the inference phase is obtained through fuzzy inference method. The essential parameters of the proposed model and classifier such ad input variable, polynomial order type, the number of rules, and fuzzification coefficient are optimized by means of Particle Swarm Optimization(PSO) and Differential Evolution(DE). The performance of the proposed precipitation forecasting system is evaluated by using KLAPS meteorological data.

Multi-level thresholding using Entropy-based Weighted FCM Algorithm in Color Image (Entropy 기반의 Weighted FCM 알고리즘을 이용한 컬러 영상 Multi-level thresholding)

  • Oh, Jun-Taek;Kwak, Hyun-Wook;Kim, Wook-Hyun
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.42 no.6
    • /
    • pp.73-82
    • /
    • 2005
  • This paper proposes a multi-level thresholding method using weighted FCM(Fuzzy C-Means) algorithm in color image. FCM algerian determines a more optimal thresholding value than the existing methods and can extend to multi-level thresholding. But FCM algerian is sensitive to noise because it doesn't include spatial information. To solve the problem, we can remove noise by applying a weight based on entropy that is obtained from neighboring pixels to FCM algerian. And we determine the optimal cluster number by using within-class distance in code image based on the clustered pixels of each color component. In the experiments, we show that the proposed method is more tolerant to noise and is more superior than the existing methods.

Design of Digits Recognition System Based on RBFNNs : A Comparative Study of Pre-processing Algorithms (방사형 기저함수 신경회로망 기반 숫자 인식 시스템의 설계 : 전처리 알고리즘을 이용한 인식성능의 비교연구)

  • Kim, Eun-Hu;Kim, Bong-Youn;Oh, Sung-Kwun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.2
    • /
    • pp.416-424
    • /
    • 2017
  • In this study, we propose a design of digits recognition system based on RBFNNs through a comparative study of pre-processing algorithms in order to recognize digits in handwritten. Histogram of Oriented Gradient(HOG) is used to get the features of digits in the proposed digits recognition system. In the pre-processing part, a dimensional reduction is executed by using Principal Component Analysis(PCA) and (2D)2PCA which are widely adopted methods in order to minimize a loss of the information during the reduction process of feature space. Also, The architecture of radial basis function neural networks consists of three functional modules such as condition, conclusion, and inference part. In the condition part, the input space is partitioned with the use of fuzzy clustering realized by means of the Fuzzy C-Means algorithm. Also, it is used instead of gaussian function to consider the characteristic of input data. In the conclusion part, the connection weights are used as the extended type of polynomial expression such as constant, linear, quadratic and modified quadratic. By using MNIST handwritten digit benchmarking database, experimental results show the effectiveness and efficiency of proposed digit recognition system when compared with other studies.

Fuzzy Identification by Means of an Auto-Tuning Algorithm and a Weighted Performance Index

  • Oh, Sung-Kwun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.8 no.6
    • /
    • pp.106-118
    • /
    • 1998
  • The study concerns a design procedure of rule-based systems. The proposed rule-based fuzzy modeling implements system structure and parameter identification in the efficient from of "IF..., THEN..." statements, and exploits the theory of system optimization and fuzzy implication rules. The method for rule-based fuzzy modeling concerns the from of the conclusion part of the the rules that can be constant. Both triangular and Gaussian-like membership function are studied. The optimization hinges on an autotuning algorithm that covers as a modified constrained optimization method known as a complex method. The study introduces a weighted performance index (objective function) that helps achieve a sound balance between the quality of results produced for the training and testing set. This methodology sheds light on the role and impact of different parameters of the model on its performance. The study is illustrated with the aid of two representative numerical examples.

  • PDF

Development of a Knowledge Discovery System using Hierarchical Self-Organizing Map and Fuzzy Rule Generation

  • Koo, Taehoon;Rhee, Jongtae
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2001.01a
    • /
    • pp.431-434
    • /
    • 2001
  • Knowledge discovery in databases(KDD) is the process for extracting valid, novel, potentially useful and understandable knowledge form real data. There are many academic and industrial activities with new technologies and application areas. Particularly, data mining is the core step in the KDD process, consisting of many algorithms to perform clustering, pattern recognition and rule induction functions. The main goal of these algorithms is prediction and description. Prediction means the assessment of unknown variables. Description is concerned with providing understandable results in a compatible format to human users. We introduce an efficient data mining algorithm considering predictive and descriptive capability. Reasonable pattern is derived from real world data by a revised neural network model and a proposed fuzzy rule extraction technique is applied to obtain understandable knowledge. The proposed neural network model is a hierarchical self-organizing system. The rule base is compatible to decision makers perception because the generated fuzzy rule set reflects the human information process. Results from real world application are analyzed to evaluate the system\`s performance.

  • PDF

Design of HCBKA-Based TSK Fuzzy Prediction System with Error Compensation (HCBKA 기반 오차 보정형 TSK 퍼지 예측시스템 설계)

  • Bang, Young-Keun;Lee, Chul-Heui
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.6
    • /
    • pp.1159-1166
    • /
    • 2010
  • To improve prediction quality of a nonlinear prediction system, the system's capability for uncertainty of nonlinear data should be satisfactory. This paper presents a TSK fuzzy prediction system that can consider and deal with the uncertainty of nonlinear data sufficiently. In the design procedures of the proposed system, HCBKA(Hierarchical Correlationship-Based K-means clustering Algorithm) was used to generate the accurate fuzzy rule base that can control output according to input efficiently, and the first-order difference method was applied to reflect various characteristics of the nonlinear data. Also, multiple prediction systems were designed to analyze the prediction tendencies of each difference data generated by the difference method. In addition, to enhance the prediction quality of the proposed system, an error compensation method was proposed and it compensated the prediction error of the systems suitably. Finally, the prediction performance of the proposed system was verified by simulating two typical time series examples.

Multiple Model Prediction System Based on Optimal TS Fuzzy Model and Its Applications to Time Series Forecasting (최적 TS 퍼지 모델 기반 다중 모델 예측 시스템의 구현과 시계열 예측 응용)

  • Bang, Young-Keun;Lee, Chul-Heui
    • Journal of Industrial Technology
    • /
    • v.28 no.B
    • /
    • pp.101-109
    • /
    • 2008
  • In general, non-stationary or chaos time series forecasting is very difficult since there exists a drift and/or nonlinearities in them. To overcome this situation, we suggest a new prediction method based on multiple model TS fuzzy predictors combined with preprocessing of time series data, where, instead of time series data, the differences of them are applied to predictors as input. In preprocessing procedure, the candidates of optimal difference interval are determined by using con-elation analysis and corresponding difference data are generated. And then, for each of them, TS fuzzy predictor is constructed by using k-means clustering algorithm and least squares method. Finally, the best predictor which minimizes the performance index is selected and it works on hereafter for prediction. Computer simulation is performed to show the effectiveness and usefulness of our method.

  • PDF

Industrial load forecasting using the fuzzy clustering and wavelet transform analysis

  • Yu, In-Keun
    • Journal of IKEEE
    • /
    • v.4 no.2 s.7
    • /
    • pp.233-240
    • /
    • 2000
  • This paper presents fuzzy clustering and wavelet transform analysis based technique for the industrial hourly load forecasting fur the purpose of peak demand control. Firstly, one year of historical load data were sorted and clustered into several groups using fuzzy clustering and then wavelet transform is adopted using the Biorthogonal mother wavelet in order to forecast the peak load of one hour ahead. The 5-level decomposition of the daily industrial load curve is implemented to consider the weather sensitive component of loads effectively. The wavelet coefficients associated with certain frequency and time localization is adjusted using the conventional multiple regression method and the components are reconstructed to predict the final loads through a five-scale synthesis technique. The outcome of the study clearly indicates that the proposed composite model of fuzzy clustering and wavelet transform approach can be used as an attractive and effective means for the industrial hourly peak load forecasting.

  • PDF

ATM Connection Admission Control Using Traffic Parameters Compression (트래픽 파라메타 압축을 이용한 ATM 연결수락제어)

  • Lee, Jin-Lee
    • The KIPS Transactions:PartC
    • /
    • v.8C no.3
    • /
    • pp.311-318
    • /
    • 2001
  • 본 논문에서는 연결수락 제어시 사용자가 전송하는 트래픽 파라메타(샐 개수의 분산값과 평균값)를 압축하여 망에 신고하는 방법을 제안하고, 압축방법에 의한 연결수락제어의 성능을 분석 비교한다. 트래픽 파라메타 압축방법은 K-means, CL(Competitive Learning), Fuzzy ISODATA,FNC(Fuzzy Neural Clustering)를 사용한다. 제안한 트래픽 파라메타의 압축에 의한 연결수락제어는 퍼지 매핑함수(Fuzzy Mapping Funciton)fp 의해 신고한 트래픽 패턴을 추정하고, 전방향 구조의 신경망을 사용하여 연결의 수락/거절을 결정한다. ON-OFF 트래픽 모델 환경에서 컴퓨터 실험을 통하여 여러 가지 압축방법들을 사용한 연결수락제어의 성능을 Fuzziness 값에 따라 비교하였고, 그 결과 FNC 방법이 우수함을 알 수 있었다. EH한 연결수락제어의 성능을 높히기 위해서 관측 프레임의 셀 분산값이 크면 Fuzziness 값을 작게 선정하고, 작으면 상대적으로 크게 선정해야 함을 알 수 있었다.

  • PDF