• Title/Summary/Keyword: future manufacturing

Search Result 1,144, Processing Time 0.025 seconds

Structural Adjustment of Domestic Firms in the Era of Market Liberalization (시장개방(市場開放)과 국내기업(國內企業)의 구조조정(構造調整))

  • Seong, So-mi
    • KDI Journal of Economic Policy
    • /
    • v.13 no.4
    • /
    • pp.91-116
    • /
    • 1991
  • Market liberalization progressing simultaneously with high and rapidly rising domestic wages has created an adverse business environment for domestic firms. Korean firms are losing their international competitiveness in comparison to firms from LDC(Less Developed Countries) in low-tech industries. In high-tech industries, domestic firms without government protection (which is impossible due to the liberalization policy and the current international status of the Korean economy) are in a disadvantaged position relative to firms from advanced countries. This paper examines the division of roles between the private sector and the government in order to achieve a successful structural adjustment, which has become the impending industrial policy issue caused by high domestic wages, on the one hand, and the opening of domestic markets, on the other. The micro foundation of the economy-wide structural adjustment is actually the restructuring of business portfolios at the firm level. The firm-level business restructuring means that firms in low-value-added businesses or with declining market niches establish new major businesses in higher value-added segments or growing market niches. The adjustment of the business structure at the firm level can only be accomplished by accumulating firm-specific managerial assets necessary to establish a new business structure. This can be done through learning-by-doing in the whole system of management, including research and development, manufacturing, and marketing. Therefore, the voluntary cooperation among the people in the company is essential for making the cost of the learning process lower than that at the competing companies. Hence, firms that attempt to restructure their major businesses need to induce corporate-wide participation through innovations in organization and management, encourage innovative corporate culture, and maintain cooperative labor unions. Policy discussions on structural adjustments usually regard firms as a black box behind a few macro variables. But in reality, firm activities are not flows of materials but relationships among human resources. The growth potential of companies are embodied in the human resources of the firm; the balance of interest among stockholders, managers, and workers of the company' brings the accumulation of the company's core competencies. Therefore, policymakers and economists shoud change their old concept of the firm as a technological black box which produces a marketable commodities. Firms should be regarded as coalitions of interest groups such as stockholders, managers, and workers. Consequently the discussion on the structural adjustment both at the macroeconomic level and the firm level should be based on this new paradigm of understanding firms. The government's role in reducing the cost of structural adjustment and supporting should the creation of new industries emphasize the following: First, government must promote the competition in domestic markets by revising laws related to antitrust policy, bankruptcy, and the promotion of small and medium-sized companies. General consensus on the limitations of government intervention and the merit of deregulation should be sought among policymakers and people in the business world. In the age of internationalization, nation-specific competitive advantages cannot be exclusively in favor of domestic firms. The international competitiveness of a domestic firm derives from the firm-specific core competencies which can be accumulated by internal investment and organization of the firm. Second, government must build up a solid infrastructure of production factors including capital, technology, manpower, and information. Structural adjustment often entails bankruptcies and partial waste of resources. However, it is desirable for the government not to try to sustain marginal businesses, but to support the diversification or restructuring of businesses by assisting in factor creation. Institutional support for venture businesses needs to be improved, especially in the financing system since many investment projects in venture businesses are highly risky, even though they are very promising. The proportion of low-value added production processes and declining industries should be reduced by promoting foreign direct investment and factory automation. Moreover, one cannot over-emphasize the importance of future-oriented labor policies to be based on the new paradigm of understanding firm activities. The old laws and instititutions related to labor unions need to be reformed. Third, government must improve the regimes related to money, banking, and the tax system to change business practices dependent on government protection or undesirable in view of the evolution of the Korean economy as a whole. To prevent rational business decisions from contradicting to the interest of the economy as a whole, government should influence the business environment, not the business itself.

  • PDF

A Study on the Development Trend of Artificial Intelligence Using Text Mining Technique: Focused on Open Source Software Projects on Github (텍스트 마이닝 기법을 활용한 인공지능 기술개발 동향 분석 연구: 깃허브 상의 오픈 소스 소프트웨어 프로젝트를 대상으로)

  • Chong, JiSeon;Kim, Dongsung;Lee, Hong Joo;Kim, Jong Woo
    • Journal of Intelligence and Information Systems
    • /
    • v.25 no.1
    • /
    • pp.1-19
    • /
    • 2019
  • Artificial intelligence (AI) is one of the main driving forces leading the Fourth Industrial Revolution. The technologies associated with AI have already shown superior abilities that are equal to or better than people in many fields including image and speech recognition. Particularly, many efforts have been actively given to identify the current technology trends and analyze development directions of it, because AI technologies can be utilized in a wide range of fields including medical, financial, manufacturing, service, and education fields. Major platforms that can develop complex AI algorithms for learning, reasoning, and recognition have been open to the public as open source projects. As a result, technologies and services that utilize them have increased rapidly. It has been confirmed as one of the major reasons for the fast development of AI technologies. Additionally, the spread of the technology is greatly in debt to open source software, developed by major global companies, supporting natural language recognition, speech recognition, and image recognition. Therefore, this study aimed to identify the practical trend of AI technology development by analyzing OSS projects associated with AI, which have been developed by the online collaboration of many parties. This study searched and collected a list of major projects related to AI, which were generated from 2000 to July 2018 on Github. This study confirmed the development trends of major technologies in detail by applying text mining technique targeting topic information, which indicates the characteristics of the collected projects and technical fields. The results of the analysis showed that the number of software development projects by year was less than 100 projects per year until 2013. However, it increased to 229 projects in 2014 and 597 projects in 2015. Particularly, the number of open source projects related to AI increased rapidly in 2016 (2,559 OSS projects). It was confirmed that the number of projects initiated in 2017 was 14,213, which is almost four-folds of the number of total projects generated from 2009 to 2016 (3,555 projects). The number of projects initiated from Jan to Jul 2018 was 8,737. The development trend of AI-related technologies was evaluated by dividing the study period into three phases. The appearance frequency of topics indicate the technology trends of AI-related OSS projects. The results showed that the natural language processing technology has continued to be at the top in all years. It implied that OSS had been developed continuously. Until 2015, Python, C ++, and Java, programming languages, were listed as the top ten frequently appeared topics. However, after 2016, programming languages other than Python disappeared from the top ten topics. Instead of them, platforms supporting the development of AI algorithms, such as TensorFlow and Keras, are showing high appearance frequency. Additionally, reinforcement learning algorithms and convolutional neural networks, which have been used in various fields, were frequently appeared topics. The results of topic network analysis showed that the most important topics of degree centrality were similar to those of appearance frequency. The main difference was that visualization and medical imaging topics were found at the top of the list, although they were not in the top of the list from 2009 to 2012. The results indicated that OSS was developed in the medical field in order to utilize the AI technology. Moreover, although the computer vision was in the top 10 of the appearance frequency list from 2013 to 2015, they were not in the top 10 of the degree centrality. The topics at the top of the degree centrality list were similar to those at the top of the appearance frequency list. It was found that the ranks of the composite neural network and reinforcement learning were changed slightly. The trend of technology development was examined using the appearance frequency of topics and degree centrality. The results showed that machine learning revealed the highest frequency and the highest degree centrality in all years. Moreover, it is noteworthy that, although the deep learning topic showed a low frequency and a low degree centrality between 2009 and 2012, their ranks abruptly increased between 2013 and 2015. It was confirmed that in recent years both technologies had high appearance frequency and degree centrality. TensorFlow first appeared during the phase of 2013-2015, and the appearance frequency and degree centrality of it soared between 2016 and 2018 to be at the top of the lists after deep learning, python. Computer vision and reinforcement learning did not show an abrupt increase or decrease, and they had relatively low appearance frequency and degree centrality compared with the above-mentioned topics. Based on these analysis results, it is possible to identify the fields in which AI technologies are actively developed. The results of this study can be used as a baseline dataset for more empirical analysis on future technology trends that can be converged.

DEVELOPMENT OF STATEWIDE TRUCK TRAFFIC FORECASTING METHOD BY USING LIMITED O-D SURVEY DATA (한정된 O-D조사자료를 이용한 주 전체의 트럭교통예측방법 개발)

  • 박만배
    • Proceedings of the KOR-KST Conference
    • /
    • 1995.02a
    • /
    • pp.101-113
    • /
    • 1995
  • The objective of this research is to test the feasibility of developing a statewide truck traffic forecasting methodology for Wisconsin by using Origin-Destination surveys, traffic counts, classification counts, and other data that are routinely collected by the Wisconsin Department of Transportation (WisDOT). Development of a feasible model will permit estimation of future truck traffic for every major link in the network. This will provide the basis for improved estimation of future pavement deterioration. Pavement damage rises exponentially as axle weight increases, and trucks are responsible for most of the traffic-induced damage to pavement. Consequently, forecasts of truck traffic are critical to pavement management systems. The pavement Management Decision Supporting System (PMDSS) prepared by WisDOT in May 1990 combines pavement inventory and performance data with a knowledge base consisting of rules for evaluation, problem identification and rehabilitation recommendation. Without a r.easonable truck traffic forecasting methodology, PMDSS is not able to project pavement performance trends in order to make assessment and recommendations in the future years. However, none of WisDOT's existing forecasting methodologies has been designed specifically for predicting truck movements on a statewide highway network. For this research, the Origin-Destination survey data avaiiable from WisDOT, including two stateline areas, one county, and five cities, are analyzed and the zone-to'||'&'||'not;zone truck trip tables are developed. The resulting Origin-Destination Trip Length Frequency (00 TLF) distributions by trip type are applied to the Gravity Model (GM) for comparison with comparable TLFs from the GM. The gravity model is calibrated to obtain friction factor curves for the three trip types, Internal-Internal (I-I), Internal-External (I-E), and External-External (E-E). ~oth "macro-scale" calibration and "micro-scale" calibration are performed. The comparison of the statewide GM TLF with the 00 TLF for the macro-scale calibration does not provide suitable results because the available 00 survey data do not represent an unbiased sample of statewide truck trips. For the "micro-scale" calibration, "partial" GM trip tables that correspond to the 00 survey trip tables are extracted from the full statewide GM trip table. These "partial" GM trip tables are then merged and a partial GM TLF is created. The GM friction factor curves are adjusted until the partial GM TLF matches the 00 TLF. Three friction factor curves, one for each trip type, resulting from the micro-scale calibration produce a reasonable GM truck trip model. A key methodological issue for GM. calibration involves the use of multiple friction factor curves versus a single friction factor curve for each trip type in order to estimate truck trips with reasonable accuracy. A single friction factor curve for each of the three trip types was found to reproduce the 00 TLFs from the calibration data base. Given the very limited trip generation data available for this research, additional refinement of the gravity model using multiple mction factor curves for each trip type was not warranted. In the traditional urban transportation planning studies, the zonal trip productions and attractions and region-wide OD TLFs are available. However, for this research, the information available for the development .of the GM model is limited to Ground Counts (GC) and a limited set ofOD TLFs. The GM is calibrated using the limited OD data, but the OD data are not adequate to obtain good estimates of truck trip productions and attractions .. Consequently, zonal productions and attractions are estimated using zonal population as a first approximation. Then, Selected Link based (SELINK) analyses are used to adjust the productions and attractions and possibly recalibrate the GM. The SELINK adjustment process involves identifying the origins and destinations of all truck trips that are assigned to a specified "selected link" as the result of a standard traffic assignment. A link adjustment factor is computed as the ratio of the actual volume for the link (ground count) to the total assigned volume. This link adjustment factor is then applied to all of the origin and destination zones of the trips using that "selected link". Selected link based analyses are conducted by using both 16 selected links and 32 selected links. The result of SELINK analysis by u~ing 32 selected links provides the least %RMSE in the screenline volume analysis. In addition, the stability of the GM truck estimating model is preserved by using 32 selected links with three SELINK adjustments, that is, the GM remains calibrated despite substantial changes in the input productions and attractions. The coverage of zones provided by 32 selected links is satisfactory. Increasing the number of repetitions beyond four is not reasonable because the stability of GM model in reproducing the OD TLF reaches its limits. The total volume of truck traffic captured by 32 selected links is 107% of total trip productions. But more importantly, ~ELINK adjustment factors for all of the zones can be computed. Evaluation of the travel demand model resulting from the SELINK adjustments is conducted by using screenline volume analysis, functional class and route specific volume analysis, area specific volume analysis, production and attraction analysis, and Vehicle Miles of Travel (VMT) analysis. Screenline volume analysis by using four screenlines with 28 check points are used for evaluation of the adequacy of the overall model. The total trucks crossing the screenlines are compared to the ground count totals. L V/GC ratios of 0.958 by using 32 selected links and 1.001 by using 16 selected links are obtained. The %RM:SE for the four screenlines is inversely proportional to the average ground count totals by screenline .. The magnitude of %RM:SE for the four screenlines resulting from the fourth and last GM run by using 32 and 16 selected links is 22% and 31 % respectively. These results are similar to the overall %RMSE achieved for the 32 and 16 selected links themselves of 19% and 33% respectively. This implies that the SELINICanalysis results are reasonable for all sections of the state.Functional class and route specific volume analysis is possible by using the available 154 classification count check points. The truck traffic crossing the Interstate highways (ISH) with 37 check points, the US highways (USH) with 50 check points, and the State highways (STH) with 67 check points is compared to the actual ground count totals. The magnitude of the overall link volume to ground count ratio by route does not provide any specific pattern of over or underestimate. However, the %R11SE for the ISH shows the least value while that for the STH shows the largest value. This pattern is consistent with the screenline analysis and the overall relationship between %RMSE and ground count volume groups. Area specific volume analysis provides another broad statewide measure of the performance of the overall model. The truck traffic in the North area with 26 check points, the West area with 36 check points, the East area with 29 check points, and the South area with 64 check points are compared to the actual ground count totals. The four areas show similar results. No specific patterns in the L V/GC ratio by area are found. In addition, the %RMSE is computed for each of the four areas. The %RMSEs for the North, West, East, and South areas are 92%, 49%, 27%, and 35% respectively, whereas, the average ground counts are 481, 1383, 1532, and 3154 respectively. As for the screenline and volume range analyses, the %RMSE is inversely related to average link volume. 'The SELINK adjustments of productions and attractions resulted in a very substantial reduction in the total in-state zonal productions and attractions. The initial in-state zonal trip generation model can now be revised with a new trip production's trip rate (total adjusted productions/total population) and a new trip attraction's trip rate. Revised zonal production and attraction adjustment factors can then be developed that only reflect the impact of the SELINK adjustments that cause mcreases or , decreases from the revised zonal estimate of productions and attractions. Analysis of the revised production adjustment factors is conducted by plotting the factors on the state map. The east area of the state including the counties of Brown, Outagamie, Shawano, Wmnebago, Fond du Lac, Marathon shows comparatively large values of the revised adjustment factors. Overall, both small and large values of the revised adjustment factors are scattered around Wisconsin. This suggests that more independent variables beyond just 226; population are needed for the development of the heavy truck trip generation model. More independent variables including zonal employment data (office employees and manufacturing employees) by industry type, zonal private trucks 226; owned and zonal income data which are not available currently should be considered. A plot of frequency distribution of the in-state zones as a function of the revised production and attraction adjustment factors shows the overall " adjustment resulting from the SELINK analysis process. Overall, the revised SELINK adjustments show that the productions for many zones are reduced by, a factor of 0.5 to 0.8 while the productions for ~ relatively few zones are increased by factors from 1.1 to 4 with most of the factors in the 3.0 range. No obvious explanation for the frequency distribution could be found. The revised SELINK adjustments overall appear to be reasonable. The heavy truck VMT analysis is conducted by comparing the 1990 heavy truck VMT that is forecasted by the GM truck forecasting model, 2.975 billions, with the WisDOT computed data. This gives an estimate that is 18.3% less than the WisDOT computation of 3.642 billions of VMT. The WisDOT estimates are based on the sampling the link volumes for USH, 8TH, and CTH. This implies potential error in sampling the average link volume. The WisDOT estimate of heavy truck VMT cannot be tabulated by the three trip types, I-I, I-E ('||'&'||'pound;-I), and E-E. In contrast, the GM forecasting model shows that the proportion ofE-E VMT out of total VMT is 21.24%. In addition, tabulation of heavy truck VMT by route functional class shows that the proportion of truck traffic traversing the freeways and expressways is 76.5%. Only 14.1% of total freeway truck traffic is I-I trips, while 80% of total collector truck traffic is I-I trips. This implies that freeways are traversed mainly by I-E and E-E truck traffic while collectors are used mainly by I-I truck traffic. Other tabulations such as average heavy truck speed by trip type, average travel distance by trip type and the VMT distribution by trip type, route functional class and travel speed are useful information for highway planners to understand the characteristics of statewide heavy truck trip patternS. Heavy truck volumes for the target year 2010 are forecasted by using the GM truck forecasting model. Four scenarios are used. Fo~ better forecasting, ground count- based segment adjustment factors are developed and applied. ISH 90 '||'&'||' 94 and USH 41 are used as example routes. The forecasting results by using the ground count-based segment adjustment factors are satisfactory for long range planning purposes, but additional ground counts would be useful for USH 41. Sensitivity analysis provides estimates of the impacts of the alternative growth rates including information about changes in the trip types using key routes. The network'||'&'||'not;based GMcan easily model scenarios with different rates of growth in rural versus . . urban areas, small versus large cities, and in-state zones versus external stations. cities, and in-state zones versus external stations.

  • PDF

Study on the effect of small and medium-sized businesses being selected as suitable business types, on the franchise industry (중소기업적합업종선정이 프랜차이즈산업에 미치는 영향에 관한 연구)

  • Kang, Chang-Dong;Shin, Geon-Chel;Jang, Jae Nam
    • Journal of Distribution Research
    • /
    • v.17 no.5
    • /
    • pp.1-23
    • /
    • 2012
  • The conflict between major corporations and small and medium-sized businesses is being aggravated, the trickle down effect is not working properly, and, as the controversy surrounding the effectiveness of the business limiting system continues to swirl, the plan proposed to protect the business domain of small and medium-sized businesses, resolve polarization between these businesses and large corporations, and protect small family run stores is the suitable business type designation system for small and medium-sized businesses. The current status of carrying out this system of selecting suitable business types among small and medium-sized businesses involves receiving applications for 234 items among the suitable business types and items from small and medium-sized businesses in manufacturing, and then selecting the items of the consultative group by analyzing and investigating the actual conditions. Suitable business type designation in the service industry will involve designation with priority on business types that are experiencing social conflict. Three major classifications of the service industry, related to the livelihood of small and medium-sized businesses, will be first designated, and subsequently this will be expanded sequentially. However, there is the concern that when designated as a suitable business type or item, this will hinder the growth motive for small to medium-sized businesses, and designation all cause decrease in consumer welfare. Also it is highly likely that it will operate as a prior regulation, cause side-effects by limiting competition systematically, and also be in violation against the main regulations of the FTA system. Moreover, it is pointed out that the system does not sufficiently reflect reverse discrimination factor against large corporations. Because conflict between small to medium sized businesses and large corporations results from the expansion of corporations to the service industry, which is unrelated to their key industry, it is necessary to introduce an advanced contract method like a master franchise or local franchise system and to develop local small to medium sized businesses through a franchise system to protect these businesses and dealers. However, this method may have an effect that contributes to stronger competitiveness of small to medium sized franchise businesses by advancing their competitiveness and operational methods a step further, but also has many negative aspects. First, as revealed by the Ministry of Knowledge Economy, the franchise industry is contributing to the strengthening of competitiveness through the economy of scale by organizing existing individual proprietors and increasing the success rate of new businesses. It is also revealed to be a response measure by the government to stabilize the economy of ordinary people and is emphasized as a 'useful way' to revitalize the service industry and improve the competitiveness of individual proprietors, and has been involved in contributions to creating jobs and expanding the domestic market by providing various services to consumers. From this viewpoint, franchises fit the purpose of the suitable business type system and is not something that is against it. Second, designation as a suitable business type may decrease investment for overseas expansion, R&D, and food safety, as well negatively affect the expansion of overseas corporations that have entered the domestic market, due to the contraction and low morale of large domestic franchise corporations that have competitiveness internationally. Also because domestic franchise businesses are hard pressed to secure competitiveness with multinational overseas franchise corporations that are operating in Korea, the system may cause difficulty for domestic franchise businesses in securing international competitiveness and also may result in reverse discrimination against these overseas franchise corporations. Third, the designation of suitable business type and item can limit the opportunity of selection for consumers who have up to now used those products and can cause a negative effect that reduces consumer welfare. Also, because there is the possibility that the range of consumer selection may be reduced when a few small to medium size businesses monopolize the market, by causing reverse discrimination between these businesses, the role of determining the utility of products must be left ot the consumer not the government. Lastly, it is desirable that this is carried out with the supplementation of deficient parts in the future, because fair trade is already secured with the enforcement of the franchise trade law and the best trade standard of the Fair Trade Commission. Overlapping regulations by the suitable business type designation is an excessive restriction in the franchise industry. Now, it is necessary to establish in the domestic franchise industry an environment where a global franchise corporation, which spreads Korean culture around the world, is capable of growing, and the active support by the government is needed. Therefore, systems that do not consider the process or background of the growth of franchise businesses and harm these businesses for the sole reason of them being large corporations must be removed. The inhibition of growth to franchise enterprises may decrease the sales of franchise stores, in some cases even bankrupt them, as well as cause other problems. Therefore the suitable business type system should not hinder large corporations, and as both small dealers and small to medium size businesses both aim at improving competitiveness and combined growth, large corporations, small dealers and small to medium sized businesses, based on their mutual cooperation, should not include franchise corporations that continue business relations with them in this system.

  • PDF