• 제목/요약/키워드: fusion of telecommunication and navigation

검색결과 4건 처리시간 0.024초

스마트/그린형 자동차의 위치정보시스템에 관한 연구 (A Study on Vehicular Positioning Technologies for Smart/Green Cars)

  • 노갑성;오준석;리앙동
    • 정보통신설비학회논문지
    • /
    • 제9권3호
    • /
    • pp.92-101
    • /
    • 2010
  • Energy efficiency and safe mobility are the two key constituents of the future automobile. The technologies that enable these features are now heavily dependent upon information and communication technology rather than traditional auto-mechanical technology. This paper presents an exploratory project 'Smart&Green Vehicle Project' at Western Michigan University which is to improve the geographical location accuracy of vehicles and to study various applications of making such location data available. Global Positioning System (GPS), Inertial Navigation System (INS), Vehicular Ad-hoc Network (VANET) technology, and data fusion among these technologies are investigated. Testing and evaluation is done on systems which will gather vehicular positioning data during GPS signal loss. Vehicles in urban settings do not acquire accurate positioning data from GPS alone; therefore there is a need for exploration into technology that can assist GPS in urban settings. The goal of this project is to improve the accuracy of positioning data during a loss of GPS signal. Controlled experiments are performed to gather data which aided in assessing the feasibility of these technologies for use in vehicular platforms.

  • PDF

A Hybrid of Smartphone Camera and Basestation Wide-area Indoor Positioning Method

  • Jiao, Jichao;Deng, Zhongliang;Xu, Lianming;Li, Fei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제10권2호
    • /
    • pp.723-743
    • /
    • 2016
  • Indoor positioning is considered an enabler for a variety of applications, the demand for an indoor positioning service has also been accelerated. That is because that people spend most of their time indoor environment. Meanwhile, the smartphone integrated powerful camera is an efficient platform for navigation and positioning. However, for high accuracy indoor positioning by using a smartphone, there are two constraints that includes: (1) limited computational and memory resources of smartphone; (2) users' moving in large buildings. To address those issues, this paper uses the TC-OFDM for calculating the coarse positioning information includes horizontal and altitude information for assisting smartphone camera-based positioning. Moreover, a unified representation model of image features under variety of scenarios whose name is FAST-SURF is established for computing the fine location. Finally, an optimization marginalized particle filter is proposed for fusing the positioning information from TC-OFDM and images. The experimental result shows that the wide location detection accuracy is 0.823 m (1σ) at horizontal and 0.5 m at vertical. Comparing to the WiFi-based and ibeacon-based positioning methods, our method is powerful while being easy to be deployed and optimized.

Convolutional Neural Networks기반 항공영상 영역분할 및 분류 (Aerial Scene Labeling Based on Convolutional Neural Networks)

  • 나종필;황승준;박승제;백중환
    • 한국항행학회논문지
    • /
    • 제19권6호
    • /
    • pp.484-491
    • /
    • 2015
  • 항공영상은 디지털 광학 영상 기술의 성장과 무인기(UAV)의 발달로 인하여 영상의 도입 및 공급이 크게 증가하였고, 이러한 항공영상 데이터를 기반으로 지상의 속성 추출, 분류, 변화탐지, 영상 융합, 지도 제작 형태로 활용되고 있다. 특히, 영상분석 및 활용에 있어 딥 러닝 알고리즘은 패턴인식 분야의 한계를 극복하는 새로운 패러다임을 보여주고 있다. 본 논문은 딥 러닝 알고리즘인 ConvNet기반으로 항공영상의 영역분할 및 분류 결과를 통한 더욱더 넓은 범위와 다양한 분야에 적용할 수 있는 가능성을 제시한다. 학습데이터는 도로, 건물, 평지, 숲 총 3000개 4-클래스로 구축하였고 클래스 별로 일정한 패턴을 가지고 있어 특징 벡터맵을 통한 결과가 서로 다르게 나옴을 확인할 수 있다. 본 연구의 알고리즘은 크게 두 가지로 구성 되어 있는데 특징추출은 ConvNet기반으로 2개의 층을 쌓았고, 분류 및 학습과정으로 다층 퍼셉트론과 로지스틱회귀 알고리즘을 활용하여 특징들을 분류 및 학습시켰다.

LIDAR 데이터와 수치항공사진을 이용한 건물 자동추출 (Automatic Building Extraction Using LIDAR and Aerial Image)

  • 정재욱;장휘정;김유석;조우석
    • 대한공간정보학회지
    • /
    • 제13권3호
    • /
    • pp.59-67
    • /
    • 2005
  • 도시지역의 대부분을 차지하는 건물에 대한 3차원 공간정보는 지도제작뿐 아니라 무선 통신망 설계, 카 내비게이션, 가상도시 구축 등에 근간이 되는 주요 정보이다. 대표적인 수동센서(passive sensor)로부터 얻어진 수치항공사진은 높은 수평 위치정확도를 가지는 반면 중심투영과 폐색지역에 의한 원천적인 문제로 인하여 자동화 과정이 어렵다. 반면 능동센서인 LIDAR 시스템은 지표면에 대한 비정규 점군 형태의 3차원 정보를 빠르고 정확하게 제공한다. 하지만 데이터 취득 특성상 건물의 외곽선과 같은 정보의 획득에는 어려움이 있다. 본 연구에서는 수치항공사진과 LIDAR 데이터를 용합하여 건물의 외곽선을 자동으로 추출하는 방법을 제안하였다. 실험 결과 본 연구에서 제안한 방법은 복잡한 형태의 건물의 외곽선 추출에 우수한 결과를 보여주었으며, LIDAR 데이터와 수치항공사진을 이용해 건물을 자동으로 추출할 수 있는 가능성을 제시하였다.

  • PDF