• Title/Summary/Keyword: fusion of sensor information

Search Result 410, Processing Time 0.025 seconds

Map Building Based on Sensor Fusion for Autonomous Vehicle (자율주행을 위한 센서 데이터 융합 기반의 맵 생성)

  • Kang, Minsung;Hur, Soojung;Park, Ikhyun;Park, Yongwan
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.6
    • /
    • pp.14-22
    • /
    • 2014
  • An autonomous vehicle requires a technology of generating maps by recognizing surrounding environment. The recognition of the vehicle's environment can be achieved by using distance information from a 2D laser scanner and color information from a camera. Such sensor information is used to generate 2D or 3D maps. A 2D map is used mostly for generating routs, because it contains information only about a section. In contrast, a 3D map involves height values also, and therefore can be used not only for generating routs but also for finding out vehicle accessible space. Nevertheless, an autonomous vehicle using 3D maps has difficulty in recognizing environment in real time. Accordingly, this paper proposes the technology for generating 2D maps that guarantee real-time recognition. The proposed technology uses only the color information obtained by removing height values from 3D maps generated based on the fusion of 2D laser scanner and camera data.

Study on the Localization Improvement of the Dead Reckoning using the INS Calibrated by the Fusion Sensor Network Information (융합 센서 네트워크 정보로 보정된 관성항법센서를 이용한 추측항법의 위치추정 향상에 관한 연구)

  • Choi, Jae-Young;Kim, Sung-Gaun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.8
    • /
    • pp.744-749
    • /
    • 2012
  • In this paper, we suggest that how to improve an accuracy of mobile robot's localization by using the sensor network information which fuses the machine vision camera, encoder and IMU sensor. The heading value of IMU sensor is measured using terrestrial magnetism sensor which is based on magnetic field. However, this sensor is constantly affected by its surrounding environment. So, we isolated template of ceiling using vision camera to increase the sensor's accuracy when we use IMU sensor; we measured the angles by pattern matching algorithm; and to calibrate IMU sensor, we compared the obtained values with IMU sensor values and the offset value. The values that were used to obtain information on the robot's position which were of Encoder, IMU sensor, angle sensor of vision camera are transferred to the Host PC by wireless network. Then, the Host PC estimates the location of robot using all these values. As a result, we were able to get more accurate information on estimated positions than when using IMU sensor calibration solely.

Pose Tracking of Moving Sensor using Monocular Camera and IMU Sensor

  • Jung, Sukwoo;Park, Seho;Lee, KyungTaek
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.8
    • /
    • pp.3011-3024
    • /
    • 2021
  • Pose estimation of the sensor is important issue in many applications such as robotics, navigation, tracking, and Augmented Reality. This paper proposes visual-inertial integration system appropriate for dynamically moving condition of the sensor. The orientation estimated from Inertial Measurement Unit (IMU) sensor is used to calculate the essential matrix based on the intrinsic parameters of the camera. Using the epipolar geometry, the outliers of the feature point matching are eliminated in the image sequences. The pose of the sensor can be obtained from the feature point matching. The use of IMU sensor can help initially eliminate erroneous point matches in the image of dynamic scene. After the outliers are removed from the feature points, these selected feature points matching relations are used to calculate the precise fundamental matrix. Finally, with the feature point matching relation, the pose of the sensor is estimated. The proposed procedure was implemented and tested, comparing with the existing methods. Experimental results have shown the effectiveness of the technique proposed in this paper.

Hierarchical Behavior Control of Mobile Robot Based on Space & Time Sensor Fusion(STSF)

  • Han, Ho-Tack
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.6 no.4
    • /
    • pp.314-320
    • /
    • 2006
  • Navigation in environments that are densely cluttered with obstacles is still a challenge for Autonomous Ground Vehicles (AGVs), especially when the configuration of obstacles is not known a priori. Reactive local navigation schemes that tightly couple the robot actions to the sensor information have proved to be effective in these environments, and because of the environmental uncertainties, STSF(Space and Time Sensor Fusion)-based fuzzy behavior systems have been proposed. Realization of autonomous behavior in mobile robots, using STSF control based on spatial data fusion, requires formulation of rules which are collectively responsible for necessary levels of intelligence. This collection of rules can be conveniently decomposed and efficiently implemented as a hierarchy of fuzzy-behaviors. This paper describes how this can be done using a behavior-based architecture. The approach is motivated by ethological models which suggest hierarchical organizations of behavior. Experimental results show that the proposed method can smoothly and effectively guide a robot through cluttered environments such as dense forests.

Development of Multi-sensor Image Fusion software(InFusion) for Value-added applications (고부가 활용을 위한 이종영상 융합 소프트웨어(InFusion) 개발)

  • Choi, Myung-jin;Chung, Inhyup;Ko, Hyeong Ghun;Jang, Sumin
    • Journal of Satellite, Information and Communications
    • /
    • v.12 no.3
    • /
    • pp.15-21
    • /
    • 2017
  • Following the successful launch of KOMPSAT-3 in May 2012, KOMPSAT-5 in August 2013, and KOMPSAT-3A in March 2015 have succeeded in launching the integrated operation of optical, radar and thermal infrared sensors in Korea. We have established a foundation to utilize the characteristics of each sensors. In order to overcome limitations in the range of application and accuracy of the application of a single sensor, multi-sensor image fusion techniques have been developed which take advantage of multiple sensors and complement each other. In this paper, we introduce the development of software (InFusion) for multi-sensor image fusion and valued-added product generation using KOMPSAT series. First, we describe the characteristics of each sensor and the necessity of fusion software development, and describe the entire development process. It aims to increase the data utilization of KOMPSAT series and to inform the superiority of domestic software through creation of high value-added products.

Implementation of a Real-time Data fusion Algorithm for Flight Test Computer (비행시험통제컴퓨터용 실시간 데이터 융합 알고리듬의 구현)

  • Lee, Yong-Jae;Won, Jong-Hoon;Lee, Ja-Sung
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.8 no.4 s.23
    • /
    • pp.24-31
    • /
    • 2005
  • This paper presents an implementation of a real-time multi-sensor data fusion algorithm for Flight Test Computer. The sensor data consist of positional information of the target from a radar, a GPS receiver and an INS. The data fusion algorithm is designed by the 21st order distributed Kalman Filter which is based on the PVA model with sensor bias states. A fault detection and correction logics are included in the algorithm for bad measurements and sensor faults. The statistical parameters for the states are obtained from Monte Carlo simulations and covariance analysis using test tracking data. The designed filter is verified by using real data both in post processing and real-time processing.

An efficient dual layer data aggregation scheme in clustered wireless sensor networks

  • Fenting Yang;Zhen Xu;Lei Yang
    • ETRI Journal
    • /
    • v.46 no.4
    • /
    • pp.604-618
    • /
    • 2024
  • In wireless sensor network (WSN) monitoring systems, redundant data from sluggish environmental changes and overlapping sensing ranges can increase the volume of data sent by nodes, degrade the efficiency of information collection, and lead to the death of sensor nodes. To reduce the energy consumption of sensor nodes and prolong the life of WSNs, this study proposes a dual layer intracluster data fusion scheme based on ring buffer. To reduce redundant data and temporary anomalous data while guaranteeing the temporal coherence of data, the source nodes employ a binarized similarity function and sliding quartile detection based on the ring buffer. Based on the improved support degree function of weighted Pearson distance, the cluster head node performs a weighted fusion on the data received from the source nodes. Experimental results reveal that the scheme proposed in this study has clear advantages in three aspects: the number of remaining nodes, residual energy, and the number of packets transmitted. The data fusion of the proposed scheme is confined to the data fusion of the same attribute environment parameters.

Implementation of a Sensor Fusion FPGA for an IoT System (사물인터넷 시스템을 위한 센서 융합 FPGA 구현)

  • Jung, Chang-Min;Lee, Kwang-Yeob;Park, Tae-Ryong
    • Journal of IKEEE
    • /
    • v.19 no.2
    • /
    • pp.142-147
    • /
    • 2015
  • In this paper, a Kalman filter-based sensor fusion filter that measures posture by calibrating and combining information obtained from acceleration and gyro sensors was proposed. Recent advancements in sensor network technology have required sensor fusion technology. In the proposed approach, the nonlinear system model of the filter is converted to a linear system model through a Jacobian matrix operation, and the measurement value predicted via Euler integration. The proposed filter was implemented at an operating frequency of 74 MHz using a Virtex-6 FPGA Board from Xilinx Inc. Further, the accuracy and reliability of the measured posture were validated by comparing the values obtained using the implemented filters with those from existing filters.

An Efficient Local Map Building Scheme based on Data Fusion via V2V Communications

  • Yoo, Seung-Ho;Choi, Yoon-Ho;Seo, Seung-Woo
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.2 no.2
    • /
    • pp.45-56
    • /
    • 2013
  • The precise identification of vehicle positions, known as the vehicle localization problem, is an important requirement for building intelligent vehicle ad-hoc networks (VANETs). To solve this problem, two categories of solutions are proposed: stand-alone and data fusion approaches. Compared to stand-alone approaches, which use single information including the global positioning system (GPS) and sensor-based navigation systems with differential corrections, data fusion approaches analyze the position information of several vehicles from GPS and sensor-based navigation systems, etc. Therefore, data fusion approaches show high accuracy. With the position information on a set of vehicles in the preprocessing stage, data fusion approaches is used to estimate the precise vehicular location in the local map building stage. This paper proposes an efficient local map building scheme, which increases the accuracy of the estimated vehicle positions via V2V communications. Even under the low ratio of vehicles with communication modules on the road, the proposed local map building scheme showed high accuracy when estimating the vehicle positions. From the experimental results based on the parameters of the practical vehicular environments, the accuracy of the proposed localization system approached the single lane-level.

  • PDF

Short Range Target Tracking Based on Data Fusion Method Using Asynchronous Dissimilar Sensors (비동기 이종 센서를 이용한 데이터 융합기반 근거리 표적 추적기법)

  • Lee, Eui-Hyuk
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.49 no.9
    • /
    • pp.335-343
    • /
    • 2012
  • This paper presents an target tracking algorithm for fusion of radar and infrared(IR) sensor measurement data. Generally, fusion methods with Kalman filter assume that processing data obtained by radar and IR sensor are synchronized. It has much limitation to apply the fusion methods to real systems. A key point which is taken into account in the proposed algorithm is the fact that two asynchronous dissimilar data are fused by compensating the time difference of the measurements using radar's ranges and track state vectors. The proposed fusion algorithm in the paper is evaluated via a computer simulation with the existing track fusion and measurement fusion methods.