• Title/Summary/Keyword: fusion of sensor information

Search Result 410, Processing Time 0.029 seconds

Recognition of Tactilie Image Dependent on Imposed Force Using Fuzzy Fusion Algorithm (접촉력에 따라 변하는 Tactile 영상의 퍼지 융합을 통한 인식기법)

  • 고동환;한헌수
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.8 no.3
    • /
    • pp.95-103
    • /
    • 1998
  • This paper deals with a problem occuring in recognition of tactile images due to the effects of imposed force at a me urement moment. Tactile image of a contact surface, used for recognition of the surface type, varies depending on the forces imposed so that a false recognition may result in. This paper fuzzifies two parameters of the contour of a tactile image with the membership function formed by considering the imposed force. Two fuzzifed paramenters are fused by the average Minkowski's dist; lnce. The proposed algorithm was implemented on the multisensor system cnmposed of an optical tact le sensor and a 6 axes forceltorque sensor. By the experiments, the proposed algorithm has shown average recognition ratio greater than 869% over all imposed force ranges and object models which is about 14% enhancement comparing to the case where only the contour information is used. The pro- ~oseda lgorithm can be used for end-effectors manipulating a deformable or fragile objects or for recognition of 3D objects by implementing on multi-fingered robot hand.

  • PDF

A Study on the Fusion of DEM Generated from Images of Optical Satellite and SAR (광학 위성영상과 SAR 위성영상의 DEM 융합에 관한 연구)

  • Yeu, Bock-Mo;Hong, Jae-Min;Jin, Kyeong-Hyeok;Yoon, Chang-Rak
    • 한국지형공간정보학회:학술대회논문집
    • /
    • 2002.11a
    • /
    • pp.58-65
    • /
    • 2002
  • The most widespread techniques for DEM generation are stereoscopy for optical sensor images and interfereometry for SAR images. These techniques suffer from certain sensor and processing limitations, which can be overcome by the synergetic use of both sensors and DEMs respectively. In this paper, different strategies for fusing SAR and optical data are combined to derive high quality DEM products. The multiresolution wavelet transform, which take advantage of the complementary properties of SAR and stereo optical DEMs, will be applied for the fusion process. By taking advantage of the fact that errors of the DEMs are of different nature using the multiresolution wavelet transform, affected part are filtered and replaced by those of the counterpart and is tested with two sets of SPOT and ERS DEM, resulting in a remarkable improvement in DEM. For the analysis of results, the reference DEM is generated from digital base map(1:5000).

  • PDF

3D Object Location Identification Using Finger Pointing and a Robot System for Tracking an Identified Object (손가락 Pointing에 의한 물체의 3차원 위치정보 인식 및 인식된 물체 추적 로봇 시스템)

  • Gwak, Dong-Gi;Hwang, Soon-Chul;Ok, Seo-Won;Yim, Jung-Sae;Kim, Dong Hwan
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.24 no.6
    • /
    • pp.703-709
    • /
    • 2015
  • In this work, a robot aimed at grapping and delivering an object by using a simple finger-pointing command from a hand- or arm-handicapped person is introduced. In this robot system, a Leap Motion sensor is utilized to obtain the finger-motion data of the user. In addition, a Kinect sensor is also used to measure the 3D (Three Dimensional)-position information of the desired object. Once the object is pointed at through the finger pointing of the handicapped user, the exact 3D information of the object is determined using an image processing technique and a coordinate transformation between the Leap Motion and Kinect sensors. It was found that the information obtained is transmitted to the robot controller, and that the robot eventually grabs the target and delivers it to the handicapped person successfully.

Sensor Fusion Docking System of Drone and Ground Vehicles Using Image Object Detection (영상 객체 검출을 이용한 드론과 지상로봇의 센서 융합 도킹 시스템)

  • Beck, Jong-Hwan;Park, Hee-Su;Oh, Se-Ryeong;Shin, Ji-Hun;Kim, Sang-Hoon
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.6 no.4
    • /
    • pp.217-222
    • /
    • 2017
  • Recent studies for working robot in dangerous places have been carried out on large unmanned ground vehicles or 4-legged robots with the advantage of long working time, but it is difficult to apply in practical dangerous fields which require the real-time system with high locomotion and capability of delicate working. This research shows the collaborated docking system of drone and ground vehicles which combines image processing algorithm and laser sensors for effective detection of docking markers, and is finally capable of moving a long distance and doing very delicate works. We proposed the docking system of drone and ground vehicles with sensor fusion which also suggests two template matching methods appropriate for this application. The system showed 95% docking success rate in 50 docking attempts.

An Indoor Localization Algorithm of UWB and INS Fusion based on Hypothesis Testing

  • Long Cheng;Yuanyuan Shi;Chen Cui;Yuqing Zhou
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.18 no.5
    • /
    • pp.1317-1340
    • /
    • 2024
  • With the rapid development of information technology, people's demands on precise indoor positioning are increasing. Wireless sensor network, as the most commonly used indoor positioning sensor, performs a vital part for precise indoor positioning. However, in indoor positioning, obstacles and other uncontrollable factors make the localization precision not very accurate. Ultra-wide band (UWB) can achieve high precision centimeter-level positioning capability. Inertial navigation system (INS), which is a totally independent system of guidance, has high positioning accuracy. The combination of UWB and INS can not only decrease the impact of non-line-of-sight (NLOS) on localization, but also solve the accumulated error problem of inertial navigation system. In the paper, a fused UWB and INS positioning method is presented. The UWB data is firstly clustered using the Fuzzy C-means (FCM). And the Z hypothesis testing is proposed to determine whether there is a NLOS distance on a link where a beacon node is located. If there is, then the beacon node is removed, and conversely used to localize the mobile node using Least Squares localization. When the number of remaining beacon nodes is less than three, a robust extended Kalman filter with M-estimation would be utilized for localizing mobile nodes. The UWB is merged with the INS data by using the extended Kalman filter to acquire the final location estimate. Simulation and experimental results indicate that the proposed method has superior localization precision in comparison with the current algorithms.

Improved Parameter Estimation with Threshold Adaptation of Cognitive Local Sensors

  • Seol, Dae-Young;Lim, Hyoung-Jin;Song, Moon-Gun;Im, Gi-Hong
    • Journal of Communications and Networks
    • /
    • v.14 no.5
    • /
    • pp.471-480
    • /
    • 2012
  • Reliable detection of primary user activity increases the opportunity to access temporarily unused bands and prevents harmful interference to the primary system. By extracting a global decision from local sensing results, cooperative sensing achieves high reliability against multipath fading. For the effective combining of sensing results, which is generalized by a likelihood ratio test, the fusion center should learn some parameters, such as the probabilities of primary transmission, false alarm, and detection at the local sensors. During the training period in supervised learning, the on/off log of primary transmission serves as the output label of decision statistics from the local sensor. In this paper, we extend unsupervised learning techniques with an expectation maximization algorithm for cooperative spectrum sensing, which does not require an external primary transmission log. Local sensors report binary hard decisions to the fusion center and adjust their operating points to enhance learning performance. Increasing the number of sensors, the joint-expectation step makes a confident classification on the primary transmission as in the supervised learning. Thereby, the proposed scheme provides accurate parameter estimates and a fast convergence rate even in low signal-to-noise ratio regimes, where the primary signal is dominated by the noise at the local sensors.

A Investigation into Tool State Monitoring by Sensing Changes according to Groove (홈의 형상에 따른 센서 감지거리 변화를 이용한 공구상태 모니터링에 관한 연구)

  • Son, Gil-Ho;Kim, Mi-Ru;Lee, Seung-Jun;Jeong, Jae-Ho;Lew, Kyung-Hee;Lee, Deug-Woo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.16 no.5
    • /
    • pp.31-39
    • /
    • 2017
  • Research in the machine tool industry has focused on ICT-based smart machines rather than hardware technologies related to machine tools. Real-time tool-status monitoring is representative of this type of technology and has become important for measuring sensors during cutting processes. In this paper, we studied several research areas and used a round bar to conduct fundamental research into the axial displacement of the main spindle of a tool when it was subjected to a machining load. We were able to use the gap sensor to detect the axial displacement indirectly by using grooves with various shapes on the round bar and sensing the gaps between the grooves. We then determined the optimal groove shape for monitoring the tool state.

A novel approach to design of local quantizers for distributed estimation

  • Kim, Yoon Hak
    • Journal of IKEEE
    • /
    • v.22 no.3
    • /
    • pp.558-564
    • /
    • 2018
  • In distributed estimation where each node can collect only partial information on the parameter of interest without communication between nodes and quantize it before transmission to a fusion node which conducts estimation of the parameter, we consider a novel quantization technique employed at local nodes. It should be noted that the performance can be greatly improved if each node can transmit its measurement to one designated node (namely, head node) which can quantize its estimate using the total rate available in the system. For this case, the best strategy at the head node would be simply to partition the parameter space using the generalized Lloyd algorithm, producing the global codewords, one of which is closest to the estimate is transmitted to a fusion node. In this paper, we propose an iterative design algorithm that seeks to efficiently assign the codewords into each of quantization partitions at nodes so as to achieve the performance close to that of the system with the head node. We show through extensive experiments that the proposed algorithm offers a performance improvement in rate-distortion perspective as compared with previous novel techniques.

Design of Obstacle Avoidance Plan of Autonomous Mobile Robot Using Backpropagation (역전파 알고리즘을 이용한 자율주행로봇의 장애물 회피계획 설계)

  • Park, Kyung-Seok;Kim, Young-Su;Yi, Kyung-Woong;Choi, Han-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2003.07d
    • /
    • pp.2588-2590
    • /
    • 2003
  • The part of manipulators is normally studied with regularized environmental conditions. however, it is the most difficult that the part of AMR must be studied with uncertainty in the environmental conditions. The part of AMR has skelton, sensor fusion, path planning etc. This paper is the research of the local pass planning that gathers information about external environment using neural network from each sensors and designs the algorithm which can determine which correct direction the robot can find. As the result of the research, AMR has been able to drive similarly as if the expert does and has been able to observe it acting without any control.

  • PDF

Localization Performance Improvement for Mobile Robot using Multiple Sensors in Slope Road (경사도로에서 다중 센서를 이용한 이동로봇의 위치추정 성능 개선)

  • Kim, Ji-Yong;Lee, Ji-Hong;Byun, Jae-Min;Kim, Sung-Hun
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.47 no.1
    • /
    • pp.67-75
    • /
    • 2010
  • This paper presents localization algorithm for mobile robot in outdoor environment. Outdoor environment includes the uncertainty on the ground. Magnetic sensor or IMU(Inertial Measurement Unit) has been used to estimate robot's heading angle. Two sensor is unavailable because mobile robot is electric car affected by magnetic field. Heading angle estimation algorithm for mobile robot is implemented using gyro sensor module consisting of 1-axis gyro sensors. Localization algorithm applied Extended Kalman filter that utilized GPS and encoder, gyro sensor module. Experiment results show that proposed localization algorithm improve considerably localization performance of mobile robots.