• Title/Summary/Keyword: fusion of sensor information

Search Result 410, Processing Time 0.031 seconds

Development of Smart Tape Attachment Robot in the Cold Rolled Coil with 3D Non-Contact Recognition (3D 비접촉 인식을 이용한 냉연코일 테이프부착 로봇 개발)

  • Shin, Chan-Bai;Kim, Jin-Dae
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.11
    • /
    • pp.1122-1129
    • /
    • 2009
  • Recently taping robot with smart recognition function have been studied in the coil manufacturing field. Due to the difficulty of 3D surface processing from the complicated working environment, it is not easy to accomplish smart tape attachment motion with non-contact sensor. To solve these problems the applicable surface recognition algorithm and a flexible sensing device has been recommended. In this research, the fusion method between 1D displacement and 3D laser scanner is applied for robust tape attachment about cold rolled coil. With these sensors we develop a two-step exploration and the smart algorithm for the awareness of non-aligned coil's information. In the proposed robot system for tape attachment, the problem is reduced to coil's radius searching with laser displacement sensor at first, and then position and orientation detection with 3D laser scanner. To get the movement at the robot's base frame, the hand-eye compensation between robot's end effector and sensing device should be also carried out respectively. In this paper, we examine the auto-coordinate transformation method in the calibration step for the real environment usage. From the experimental results, it was shown that the taping motion of robot had a robust under the non-aligned cold rolled coil.

Optical Filter Design for Fluorescence Technique Based Phycocyanin Measurement Sensor Used In Water Treatment Plants

  • Mariappan, Vinayagam;Lee, Sung Hwa;Yang, Seungyoun;Kim, Jintae;Lee, Minwoo
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.10 no.2
    • /
    • pp.45-50
    • /
    • 2018
  • Recently the water management department advised the water treatment industry to focus on deploy the chemical free and the environmentally responsible process to adopt on water treatment plants in every country. In this objective, water treatment process started using ultrasonic based phycocyanin extraction with fluorescence measurement techniques to detect the change in the yield of phycocyanin. This paper propose the design of optical filter model for fluorescence technique based immersive optical phycocyanin measurement sensor design. The proposed design uses the multi-wavelength sensor module for irradiating part, and this plays a role of removing a wavelength band other than 590 ~ 620 nm. The preliminary study on immersed phycocyanin sensor, the fluorescence value of picocyanin according to the ultrasonic intensity, treatment time and number of cells was measured using JM phycocyanin module to emulate the proposed design, and were compared performance of the proposed sensor emulation. In this design, the phycocyanin fluorescence value increased about 2.1 ~ 4.7 times as the ultrasonic treatment time increased as compared with JM phycocyanin module, and the phycocyanin fluorescence value within the analysis range was obtained by ultrasonic treatment within one minute.

Sensor Fusion for Underwater Navigation of Unmanned Underwater Vehicle (무인잠수체의 수중항법을 위한 센서퓨전)

  • 주민근;서주노;송광섭;이판묵;홍석원;박영일
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.175-175
    • /
    • 2000
  • In this Paper we propose a navigation algorithm which can be used to estimate state vectors such as position and velocity for its motion control using multi-sensor output measurements. The output measurement we will use in estimating the state is a series of known multi-sensor asynchronous outputs with measurement noise. This paper investigates the Extended Kalman Filtering method to merge asynchronous heading, heading rate, velocity of DVL, and SSBL information to produce a single state vector. Different complexity of Kalman Filter, with biases and measurement noise, are investigated with theoretically data from KRISO's AUV. All levels of complexity of the Kalman Filters are shown to be much more close and smooth to real trajectories then the basic underwater acoustic navigation system comment)'used aboard underwater vehicle.

  • PDF

UGV Localization using Multi-sensor Fusion based on Federated Filter in Outdoor Environments (야지환경에서 연합형 필터 기반의 다중센서 융합을 이용한 무인지상로봇 위치추정)

  • Choi, Ji-Hoon;Park, Yong Woon;Joo, Sang Hyeon;Shim, Seong Dae;Min, Ji Hong
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.15 no.5
    • /
    • pp.557-564
    • /
    • 2012
  • This paper presents UGV localization using multi-sensor fusion based on federated filter in outdoor environments. The conventional GPS/INS integrated system does not guarantee the robustness of localization because GPS is vulnerable to external disturbances. In many environments, however, vision system is very efficient because there are many features compared to the open space and these features can provide much information for UGV localization. Thus, this paper uses the scene matching and pose estimation based vision navigation, magnetic compass and odometer to cope with the GPS-denied environments. NR-mode federated filter is used for system safety. The experiment results with a predefined path demonstrate enhancement of the robustness and accuracy of localization in outdoor environments.

Development of Robot Control and Measurement for Unknown Geometric Surface Grinding (미지형상 표면의 연삭 작업을 위한 로봇 제어ㆍ계측 시스템 개발)

  • Choe, Byeong-O;Park, Geun-U;Lee, Min-Gi;Lee, Jung-Hun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.4 s.175
    • /
    • pp.1039-1046
    • /
    • 2000
  • This paper introduces the control and measurement of a double parallel robot manipulator applied for unknown geometric surface grinding. A measurement system is developed to recognize a grinding path by a vision camera and to observe a grinding load by a current sensor. With the measured fusion information, an intelligent controller identifies the unknown geometric surface and moves the robot along the grinding path with a constant grinding load.

Audio-Visual Fusion for Sound Source Localization and Improved Attention (음성-영상 융합 음원 방향 추정 및 사람 찾기 기술)

  • Lee, Byoung-Gi;Choi, Jong-Suk;Yoon, Sang-Suk;Choi, Mun-Taek;Kim, Mun-Sang;Kim, Dai-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.7
    • /
    • pp.737-743
    • /
    • 2011
  • Service robots are equipped with various sensors such as vision camera, sonar sensor, laser scanner, and microphones. Although these sensors have their own functions, some of them can be made to work together and perform more complicated functions. AudioFvisual fusion is a typical and powerful combination of audio and video sensors, because audio information is complementary to visual information and vice versa. Human beings also mainly depend on visual and auditory information in their daily life. In this paper, we conduct two studies using audioFvision fusion: one is on enhancing the performance of sound localization, and the other is on improving robot attention through sound localization and face detection.

Study on Tactical Target Tracking Performance Using Unscented Transform-based Filtering (무향 변환 기반 필터링을 이용한 전술표적 추적 성능 연구)

  • Byun, Jaeuk;Jung, Hyoyoung;Lee, Saewoom;Kim, Gi-Sung;Kim, Kiseon
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.17 no.1
    • /
    • pp.96-107
    • /
    • 2014
  • Tracking the tactical object is a fundamental affair in network-equipped modern warfare. Geodetic coordinate system based on longitude, latitude, and height is suitable to represent the location of tactical objects considering multi platform data fusion. The motion of tactical object described as a dynamic model requires an appropriate filtering to overcome the system and measurement noise in acquiring information from multiple sensors. This paper introduces the filter suitable for multi-sensor data fusion and tactical object tracking, particularly the unscented transform(UT) and its detail. The UT in Unscented Kalman Filter(UKF) uses a few samples to estimate nonlinear-propagated statistic parameters, and UT has better performance and complexity than the conventional linearization method. We show the effects of UT-based filtering via simulation considering practical tactical object tracking scenario.

Performance Evaluation of a Compressed-State Constraint Kalman Filter for a Visual/Inertial/GNSS Navigation System

  • Yu Dam Lee;Taek Geun Lee;Hyung Keun Lee
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.12 no.2
    • /
    • pp.129-140
    • /
    • 2023
  • Autonomous driving systems are likely to be operated in various complex environments. However, the well-known integrated Global Navigation Satellite System (GNSS)/Inertial Navigation System (INS), which is currently the major source for absolute position information, still has difficulties in accurate positioning in harsh signal environments such as urban canyons. To overcome these difficulties, integrated Visual/Inertial/GNSS (VIG) navigation systems have been extensively studied in various areas. Recently, a Compressed-State Constraint Kalman Filter (CSCKF)-based VIG navigation system (CSCKF-VIG) using a monocular camera, an Inertial Measurement Unit (IMU), and GNSS receivers has been studied with the aim of providing robust and accurate position information in urban areas. For this new filter-based navigation system, on the basis of time-propagation measurement fusion theory, unnecessary camera states are not required in the system state. This paper presents a performance evaluation of the CSCKF-VIG system compared to other conventional navigation systems. First, the CSCKF-VIG is introduced in detail compared to the well-known Multi-State Constraint Kalman Filter (MSCKF). The CSCKF-VIG system is then evaluated by a field experiment in different GNSS availability situations. The results show that accuracy is improved in the GNSS-degraded environment compared to that of the conventional systems.

Design and Implementation of CNN-based HMI System using Doppler Radar and Voice Sensor (도플러 레이다 및 음성 센서를 활용한 CNN 기반 HMI 시스템 설계 및 구현)

  • Oh, Seunghyun;Bae, Chanhee;Kim, Seryeong;Cho, Jaechan;Jung, Yunho
    • Journal of IKEEE
    • /
    • v.24 no.3
    • /
    • pp.777-782
    • /
    • 2020
  • In this paper, we propose CNN-based HMI system using Doppler radar and voice sensor, and present hardware design and implementation results. To overcome the limitation of single sensor monitoring, the proposed HMI system combines data from two sensors to improve performance. The proposed system exhibits improved performance by 3.5% and 12% compared to a single radar and voice sensor-based classifier in noisy environment. In addition, hardware to accelerate the complex computational unit of CNN is implemented and verified on the FPGA test system. As a result of performance evaluation, the proposed HMI acceleration platform can be processed with 95% reduction in computation time compared to a single software-based design.

Behavior Planning for Humanoid Robot Using Behavior Primitive (행동 프리미티브 기반 휴머노이드 로봇의 행동 계획)

  • Noh, Su-Hee;Kim, Yong-Tae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.19 no.1
    • /
    • pp.108-114
    • /
    • 2009
  • In this paper, we presents a behavior planning for humanoid robots using behavior primitive in 3 dimensional workspace. Also, we define behavior primitives that humanoid robot accomplishes various tasks effectively. Humanoid robot obtains information of the outside environment and its inner information from various sensors in complex workspace with various obstacles. We verify our approach on a developed small humanoid robot using embedded vision and sensor system in a experimental environment. The experimental results show that the humanoid robot performs its tasks fast and effectively.