• Title/Summary/Keyword: fusion of sensor information

Search Result 410, Processing Time 0.033 seconds

Multi-sensor Data Fusion Using Weighting Method based on Event Frequency (다중센서 데이터 융합에서 이벤트 발생 빈도기반 가중치 부여)

  • Suh, Dong-Hyok;Ryu, Chang-Keun
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.6 no.4
    • /
    • pp.581-587
    • /
    • 2011
  • A wireless sensor network needs to consist of multi-sensors in order to infer a high level of information on circumstances. Data fusion, in turn, is required to utilize the data collected from multi-sensors for the inference of information on circumstances. The current paper, based on Dempster-Shafter's evidence theory, proposes data fusion in a wireless sensor network with different weights assigned to different sensors. The frequency of events per sensor is the crucial element in calculating different weights of the data of circumstances that each sensor collects. Data fusion utilizing these different weights turns out to show remarkable difference in reliability, which makes it much easier to infer information on circumstances.

Command Fusion for Navigation of Mobile Robots in Dynamic Environments with Objects

  • Jin, Taeseok
    • Journal of information and communication convergence engineering
    • /
    • v.11 no.1
    • /
    • pp.24-29
    • /
    • 2013
  • In this paper, we propose a fuzzy inference model for a navigation algorithm for a mobile robot that intelligently searches goal location in unknown dynamic environments. Our model uses sensor fusion based on situational commands using an ultrasonic sensor. Instead of using the "physical sensor fusion" method, which generates the trajectory of a robot based upon the environment model and sensory data, a "command fusion" method is used to govern the robot motions. The navigation strategy is based on a combination of fuzzy rules tuned for both goal-approach and obstacle-avoidance based on a hierarchical behavior-based control architecture. To identify the environments, a command fusion technique is introduced where the sensory data of the ultrasonic sensors and a vision sensor are fused into the identification process. The result of experiment has shown that highlights interesting aspects of the goal seeking, obstacle avoiding, decision making process that arise from navigation interaction.

Improvement of Land Cover Classification Accuracy by Optimal Fusion of Aerial Multi-Sensor Data

  • Choi, Byoung Gil;Na, Young Woo;Kwon, Oh Seob;Kim, Se Hun
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.36 no.3
    • /
    • pp.135-152
    • /
    • 2018
  • The purpose of this study is to propose an optimal fusion method of aerial multi - sensor data to improve the accuracy of land cover classification. Recently, in the fields of environmental impact assessment and land monitoring, high-resolution image data has been acquired for many regions for quantitative land management using aerial multi-sensor, but most of them are used only for the purpose of the project. Hyperspectral sensor data, which is mainly used for land cover classification, has the advantage of high classification accuracy, but it is difficult to classify the accurate land cover state because only the visible and near infrared wavelengths are acquired and of low spatial resolution. Therefore, there is a need for research that can improve the accuracy of land cover classification by fusing hyperspectral sensor data with multispectral sensor and aerial laser sensor data. As a fusion method of aerial multisensor, we proposed a pixel ratio adjustment method, a band accumulation method, and a spectral graph adjustment method. Fusion parameters such as fusion rate, band accumulation, spectral graph expansion ratio were selected according to the fusion method, and the fusion data generation and degree of land cover classification accuracy were calculated by applying incremental changes to the fusion variables. Optimal fusion variables for hyperspectral data, multispectral data and aerial laser data were derived by considering the correlation between land cover classification accuracy and fusion variables.

Landmark Detection Based on Sensor Fusion for Mobile Robot Navigation in a Varying Environment

  • Jin, Tae-Seok;Kim, Hyun-Sik;Kim, Jong-Wook
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.10 no.4
    • /
    • pp.281-286
    • /
    • 2010
  • We propose a space and time based sensor fusion method and a robust landmark detecting algorithm based on sensor fusion for mobile robot navigation. To fully utilize the information from the sensors, first, this paper proposes a new sensor-fusion technique where the data sets for the previous moments are properly transformed and fused into the current data sets to enable an accurate measurement. Exploration of an unknown environment is an important task for the new generation of mobile robots. The mobile robots may navigate by means of a number of monitoring systems such as the sonar-sensing system or the visual-sensing system. The newly proposed, STSF (Space and Time Sensor Fusion) scheme is applied to landmark recognition for mobile robot navigation in an unstructured environment as well as structured environment, and the experimental results demonstrate the performances of the landmark recognition.

A Study on the Multi-sensor Data Fusion System for Ground Target Identification (지상표적식별을 위한 다중센서기반의 정보융합시스템에 관한 연구)

  • Gang, Seok-Hun
    • Journal of National Security and Military Science
    • /
    • s.1
    • /
    • pp.191-229
    • /
    • 2003
  • Multi-sensor data fusion techniques combine evidences from multiple sensors in order to get more accurate and efficient meaningful information through several process levels that may not be possible from a single sensor alone. One of the most important parts in the data fusion system is the identification fusion, and it can be categorized into physical models, parametric classification and cognitive-based models, and parametric classification technique is usually used in multi-sensor data fusion system by its characteristic. In this paper, we propose a novel heuristic identification fusion method in which we adopt desirable properties from not only parametric classification technique but also cognitive-based models in order to meet the realtime processing requirements.

  • PDF

Lane Information Fusion Scheme using Multiple Lane Sensors (다중센서 기반 차선정보 시공간 융합기법)

  • Lee, Soomok;Park, Gikwang;Seo, Seung-woo
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.12
    • /
    • pp.142-149
    • /
    • 2015
  • Most of the mono-camera based lane detection systems are fragile on poor illumination conditions. In order to compensate limitations of single sensor utilization, lane information fusion system using multiple lane sensors is an alternative to stabilize performance and guarantee high precision. However, conventional fusion schemes, which only concerns object detection, are inappropriate to apply to the lane information fusion. Even few studies considering lane information fusion have dealt with limited aids on back-up sensor or omitted cases of asynchronous multi-rate and coverage. In this paper, we propose a lane information fusion scheme utilizing multiple lane sensors with different coverage and cycle. The precise lane information fusion is achieved by the proposed fusion framework which considers individual ranging capability and processing time of diverse types of lane sensors. In addition, a novel lane estimation model is proposed to synchronize multi-rate sensors precisely by up-sampling spare lane information signals. Through quantitative vehicle-level experiments with around view monitoring system and frontal camera system, we demonstrate the robustness of the proposed lane fusion scheme.

Sensor fault diagnosis for bridge monitoring system using similarity of symmetric responses

  • Xu, Xiang;Huang, Qiao;Ren, Yuan;Zhao, Dan-Yang;Yang, Juan
    • Smart Structures and Systems
    • /
    • v.23 no.3
    • /
    • pp.279-293
    • /
    • 2019
  • To ensure high quality data being used for data mining or feature extraction in the bridge structural health monitoring (SHM) system, a practical sensor fault diagnosis methodology has been developed based on the similarity of symmetric structure responses. First, the similarity of symmetric response is discussed using field monitoring data from different sensor types. All the sensors are initially paired and sensor faults are then detected pair by pair to achieve the multi-fault diagnosis of sensor systems. To resolve the coupling response issue between structural damage and sensor fault, the similarity for the target zone (where the studied sensor pair is located) is assessed to determine whether the localized structural damage or sensor fault results in the dissimilarity of the studied sensor pair. If the suspected sensor pair is detected with at least one sensor being faulty, field test could be implemented to support the regression analysis based on the monitoring and field test data for sensor fault isolation and reconstruction. Finally, a case study is adopted to demonstrate the effectiveness of the proposed methodology. As a result, Dasarathy's information fusion model is adopted for multi-sensor information fusion. Euclidean distance is selected as the index to assess the similarity. In conclusion, the proposed method is practical for actual engineering which ensures the reliability of further analysis based on monitoring data.

Vision Sensor and Ultrasonic Sensor Fusion Using Neural Network

  • Baek, Sang-Hoon;Oh, Se-Young
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.668-671
    • /
    • 2004
  • This paper proposes a new method of sensor fusion of an ultrasonic sensor and a vision sensor at the sensor level. In general vision system, the vision system finds edges of objects. And in general ultrasonic system, the ultrasonic system finds absolute distance between robot and object. So, the method integrates data of two different types. The system makes perfect output for robot control in the end. But this paper does not propose only integrating a different kind of data but also fusion information which receives from different kind of sensors. This method has advantages which can simply embody algorithm and can control robot on real time.

  • PDF

A Cyber-Physical Information System for Smart Buildings with Collaborative Information Fusion

  • Liu, Qing;Li, Lanlan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.5
    • /
    • pp.1516-1539
    • /
    • 2022
  • This article shows a set of physical information fusion IoT systems that we designed for smart buildings. Its essence is a computer system that combines physical quantities in buildings with quantitative analysis and control. In the part of the Internet of Things, its mechanism is controlled by a monitoring system based on sensor networks and computer-based algorithms. Based on the design idea of the agent, we have realized human-machine interaction (HMI) and machine-machine interaction (MMI). Among them, HMI is realized through human-machine interaction, while MMI is realized through embedded computing, sensors, controllers, and execution. Device and wireless communication network. This article mainly focuses on the function of wireless sensor networks and MMI in environmental monitoring. This function plays a fundamental role in building security, environmental control, HVAC, and other smart building control systems. The article not only discusses various network applications and their implementation based on agent design but also demonstrates our collaborative information fusion strategy. This strategy can provide a stable incentive method for the system through collaborative information fusion when the sensor system is unstable in the physical measurements, thereby preventing system jitter and unstable response caused by uncertain disturbances and environmental factors. This article also gives the results of the system test. The results show that through the CPS interaction of HMI and MMI, the intelligent building IoT system can achieve comprehensive monitoring, thereby providing support and expansion for advanced automation management.

Bayesian Sensor Fusion of Monocular Vision and Laser Structured Light Sensor for Robust Localization of a Mobile Robot (이동 로봇의 강인 위치 추정을 위한 단안 비젼 센서와 레이저 구조광 센서의 베이시안 센서융합)

  • Kim, Min-Young;Ahn, Sang-Tae;Cho, Hyung-Suck
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.4
    • /
    • pp.381-390
    • /
    • 2010
  • This paper describes a procedure of the map-based localization for mobile robots by using a sensor fusion technique in structured environments. A combination of various sensors with different characteristics and limited sensibility has advantages in view of complementariness and cooperation to obtain better information on the environment. In this paper, for robust self-localization of a mobile robot with a monocular camera and a laser structured light sensor, environment information acquired from two sensors is combined and fused by a Bayesian sensor fusion technique based on the probabilistic reliability function of each sensor predefined through experiments. For the self-localization using the monocular vision, the robot utilizes image features consisting of vertical edge lines from input camera images, and they are used as natural landmark points in self-localization process. However, in case of using the laser structured light sensor, it utilizes geometrical features composed of corners and planes as natural landmark shapes during this process, which are extracted from range data at a constant height from the navigation floor. Although only each feature group of them is sometimes useful to localize mobile robots, all features from the two sensors are simultaneously used and fused in term of information for reliable localization under various environment conditions. To verify the advantage of using multi-sensor fusion, a series of experiments are performed, and experimental results are discussed in detail.