• Title/Summary/Keyword: fusion of sensor information

Search Result 411, Processing Time 0.031 seconds

Multi-Attribute Data Fusion for Energy Equilibrium Routing in Wireless Sensor Networks

  • Lin, Kai;Wang, Lei;Li, Keqiu;Shu, Lei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.4 no.1
    • /
    • pp.5-24
    • /
    • 2010
  • Data fusion is an attractive technology because it allows various trade-offs related to performance metrics, e.g., energy, latency, accuracy, fault-tolerance and security in wireless sensor networks (WSNs). Under a complicated environment, each sensor node must be equipped with more than one type of sensor module to monitor multi-targets, so that the complexity for the fusion process is increased due to the existence of various physical attributes. In this paper, we first investigate the process and performance of multi-attribute fusion in data gathering of WSNs, and then propose a self-adaptive threshold method to balance the different change rates of each attributive data. Furthermore, we present a method to measure the energy-conservation efficiency of multi-attribute fusion. Based on our proposed methods, we design a novel energy equilibrium routing method for WSNs, viz., multi-attribute fusion tree (MAFT). Simulation results demonstrate that MAFT achieves very good performance in terms of the network lifetime.

Sensor Data Fusion for Navigation of Mobile Robot With Collision Avoidance and Trap Recovery

  • Jeon, Young-Su;Ahn, Byeong-Kyu;Kuc, Tae-Yong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.2461-2466
    • /
    • 2003
  • This paper presents a simple sensor fusion algorithm using neural network for navigation of mobile robots with obstacle avoidance and trap recovery. The multiple sensors input sensor data to the input layer of neural network activating the input nodes. The multiple sensors used include optical encoders, ultrasonic sensors, infrared sensors, a magnetic compass sensor, and GPS sensors. The proposed sensor fusion algorithm is combined with the VFH(Vector Field Histogram) algorithm for obstacle avoidance and AGPM(Adaptive Goal Perturbation Method) which sets adaptive virtual goals to escape trap situations. The experiment results show that the proposed low-level fusion algorithm is effective for real-time navigation of mobile robot.

  • PDF

MULTI-SENSOR DATA FUSION FOR FUTURE TELEMATICS APPLICATION

  • Kim, Seong-Baek;Lee, Seung-Yong;Choi, Ji-Hoon;Choi, Kyung-Ho;Jang, Byung-Tae
    • Journal of Astronomy and Space Sciences
    • /
    • v.20 no.4
    • /
    • pp.359-364
    • /
    • 2003
  • In this paper, we present multi-sensor data fusion for telematics application. Successful telematics can be realized through the integration of navigation and spatial information. The well-determined acquisition of vehicle's position plays a vital role in application service. The development of GPS is used to provide the navigation data, but the performance is limited in areas where poor satellite visibility environment exists. Hence, multi-sensor fusion including IMU (Inertial Measurement Unit), GPS(Global Positioning System), and DMI (Distance Measurement Indicator) is required to provide the vehicle's position to service provider and driver behind the wheel. The multi-sensor fusion is implemented via algorithm based on Kalman filtering technique. Navigation accuracy can be enhanced using this filtering approach. For the verification of fusion approach, land vehicle test was performed and the results were discussed. Results showed that the horizontal position errors were suppressed around 1 meter level accuracy under simulated non-GPS availability environment. Under normal GPS environment, the horizontal position errors were under 40㎝ in curve trajectory and 27㎝ in linear trajectory, which are definitely depending on vehicular dynamics.

Performance Evaluation of Decision Fusion Rules of Wireless Sensor Networks in Generalized Gaussian Noise (Generalized Gaussian Noise에서의 무선센서 네트워크의 Decision Fusion Rule의 성능 분석에 관한 연구)

  • Park, Jin-Tae;Koo, In-Soo;Kim, Ki-Seon
    • Proceedings of the IEEK Conference
    • /
    • 2006.06a
    • /
    • pp.97-98
    • /
    • 2006
  • Fusion of decisions from multiple distributed sensor nodes is studied in this work. Based on the canonical parallel fusion model, we derive the optimal likelihood ratio based fusion rule with the assumptions of the generalized Gaussian noise model and the arbitrary fading channel. This optimal fusion rule, however, requires the complete knowledge of the channels and the detection performance of local sensor nodes. To mitigate these requirements and to provide near optimum performance, we derive suboptimum fusion rules by using high and low signal-to-noise ratio (SNR) approximations to the optimal fusion rule. Performance evaluation is conducted through simulations.

  • PDF

Design of Multi-Sensor Data Fusion Filter for a Flight Test System (비행시험시스템용 다중센서 자료융합필터 설계)

  • Lee, Yong-Jae;Lee, Ja-Sung
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.55 no.9
    • /
    • pp.414-419
    • /
    • 2006
  • This paper presents a design of a multi-sensor data fusion filter for a Flight Test System. The multi-sensor data consist of positional information of the target from radars and a telemetry system. The data fusion filter has a structure of a federated Kalman filter and is based on the Singer dynamic target model. It consists of dedicated local filter for each sensor, generally operating in parallel, plus a master fusion filter. A fault detection and correction algorithms are included in the local filter for treating bad measurements and sensor faults. The data fusion is carried out in the fusion filter by using maximum likelihood estimation algorithm. The performance of the designed fusion filter is verified by using both simulation data and real data.

A Study on a Multi-sensor Information Fusion Architecture for Avionics (항공전자 멀티센서 정보 융합 구조 연구)

  • Kang, Shin-Woo;Lee, Seoung-Pil;Park, Jun-Hyeon
    • Journal of Advanced Navigation Technology
    • /
    • v.17 no.6
    • /
    • pp.777-784
    • /
    • 2013
  • Synthesis process from the data produced by different types of sensor into a single information is being studied and used in a variety of platforms in terms of multi-sensor data fusion. Heterogeneous sensors has been integrated into various aircraft and modern avionic systems manage them. As the performance of sensors in aircraft is getting higher, the integration of sensor information is required from the viewpoint of avionics gradually. Information fusion is not studied widely in the view of software that provide a pilot with fused information from data produced by the sensor in the form of symbology on a display device. The purpose of information fusion is to assist pilots to make a decision in order to perform mission by providing the correct combat situation from avionics of the aircraft and to minimize their workload consequently. In the aircraft avionics equipped with different types of sensors, the software architecture that produce a comprehensive information using the sensor data through multi-sensor data fusion process to the user is shown in this paper.

Robust Hierarchical Data Fusion Scheme for Large-Scale Sensor Network

  • Song, Il Young
    • Journal of Sensor Science and Technology
    • /
    • v.26 no.1
    • /
    • pp.1-6
    • /
    • 2017
  • The advanced driver assistant system (ADAS) requires the collection of a large amount of information including road conditions, environment, vehicle status, condition of the driver, and other useful data. In this regard, large-scale sensor networks can be an appropriate solution since they have been designed for this purpose. Recent advances in sensor network technology have enabled the management and monitoring of large-scale tasks such as the monitoring of road surface temperature on a highway. In this paper, we consider the estimation and fusion problems of the large-scale sensor networks used in the ADAS. Hierarchical fusion architecture is proposed for an arbitrary topology of the large-scale sensor network. A robust cluster estimator is proposed to achieve robustness of the network against outliers or failure of sensors. Lastly, a robust hierarchical data fusion scheme is proposed for the communication channel between the clusters and fusion center, considering the non-Gaussian channel noise, which is typical in communication systems.

The Sensory-Motor Fusion System for Object Tracking (이동 물체를 추적하기 위한 감각 운동 융합 시스템 설계)

  • Lee, Sang-Hee;Wee, Jae-Woo;Lee, Chong-Ho
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.52 no.3
    • /
    • pp.181-187
    • /
    • 2003
  • For the moving objects with environmental sensors such as object tracking moving robot with audio and video sensors, environmental information acquired from sensors keep changing according to movements of objects. In such case, due to lack of adaptability and system complexity, conventional control schemes show limitations on control performance, and therefore, sensory-motor systems, which can intuitively respond to various types of environmental information, are desirable. And also, to improve the system robustness, it is desirable to fuse more than two types of sensory information simultaneously. In this paper, based on Braitenberg's model, we propose a sensory-motor based fusion system, which can trace the moving objects adaptively to environmental changes. With the nature of direct connecting structure, sensory-motor based fusion system can control each motor simultaneously, and the neural networks are used to fuse information from various types of sensors. And also, even if the system receives noisy information from one sensor, the system still robustly works with information from other sensors which compensates the noisy information through sensor fusion. In order to examine the performance, sensory-motor based fusion model is applied to object-tracking four-foot robot equipped with audio and video sensors. The experimental results show that the sensory-motor based fusion system can tract moving objects robustly with simpler control mechanism than model-based control approaches.

Improvement of Control Performance by Data Fusion of Sensors

  • Na, Seung-You;Shin, Dae-Jung
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.4 no.1
    • /
    • pp.63-69
    • /
    • 2004
  • In this paper, we propose a general framework for sensor data fusion applied to control systems. Since many kinds of disturbances are introduced to a control system, it is necessary to rely on multisensor data fusion to improve control performance in spite of the disturbances. Multisensor data fusion for a control system is considered a sequence of making decisions for a combination of sensor data to make a proper control input in uncertain conditions of disturbance effects on sensors. The proposed method is applied to a typical control system of a flexible link system in which reduction of oscillation is obtained using a photo sensor at the tip of the link. But the control performance depends heavily on the environmental light conditions. To overcome the light disturbance difficulties, an accelerometer is used in addition to the existing photo sensor. Improvement of control performance is possible by utilizing multisensor data fusion for various output responses to show the feasibility of the proposed method in this paper.

Sensor Fusion System for Improving the Recognition Performance of 3D Object (3차원 물체의 인식 성능 향상을 위한 감각 융합 시스템)

  • Kim, Ji-Kyoung;Oh, Yeong-Jae;Chong, Kab-Sung;Wee, Jae-Woo;Lee, Chong-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2004.11c
    • /
    • pp.107-109
    • /
    • 2004
  • In this paper, authors propose the sensor fusion system that can recognize multiple 3D objects from 2D projection images and tactile information. The proposed system focuses on improving recognition performance of 3D object. Unlike the conventional object recognition system that uses image sensor alone, the proposed method uses tactual sensors in addition to visual sensor. Neural network is used to fuse these informations. Tactual signals are obtained from the reaction force by the pressure sensors at the fingertips when unknown objects are grasped by four-fingered robot hand. The experiment evaluates the recognition rate and the number of teaming iterations of various objects. The merits of the proposed systems are not only the high performance of the learning ability but also the reliability of the system with tactual information for recognizing various objects even though visual information has a defect. The experimental results show that the proposed system can improve recognition rate and reduce learning time. These results verify the effectiveness of the proposed sensor fusion system as recognition scheme of 3D object.

  • PDF