• Title/Summary/Keyword: fuses, numerical method

Search Result 4, Processing Time 0.019 seconds

Seismic retrofitting of steel moment-resisting frames (SMRFs) using steel pipe dampers

  • Ali Mohammad Rousta
    • Structural Engineering and Mechanics
    • /
    • v.87 no.1
    • /
    • pp.69-84
    • /
    • 2023
  • The use of steel pipe dampers (SPD) as fuses or interchangeable elements in the steel moment-resisting frames (MRF) is one of the newest methods for improving seismic performance. In the present study, the performance of steel pipe dampers in MRF has been investigated. Evaluation of MRF with and without SPD models were performed using the finite element method by ABAQUS. For validation, an MRF and MRF with steel pipe dampers were modeled that had been experimentally tested and reported in previous experimental research and a good agreement was observed. The behavior of these dampers in frames of 3, 6, and 9 stories was studied by modeling the damper directly. Nonlinear time history dynamic analysis was used. It was observed that by increasing the number of stories in the buildings, steel pipe dampers should be used to perform properly against earthquakes. The installation of steel pipe dampers in steel moment-resisting frames shows that the drift ratio between the floors is reduced and the seismic performance of these frames is improved.

Improved seismic performance of steel moment frames using rotational friction dampers

  • Ali Banazadeh;Ahmad Maleki;Mohammad Ali Lotfollahi Yaghin
    • Earthquakes and Structures
    • /
    • v.25 no.4
    • /
    • pp.223-234
    • /
    • 2023
  • The use of displacement-dependent rotational friction dampers (RFD) as fuses or interchangeable elements in the moment-resisting frames (MRF) is one of the newest methods for improving seismic performance. In the present study, the performance of rotational friction dampers in MRF has been investigated. Evaluation of MRF with and without RFD models was performed using the finite element method by ABAQUS. For validation, an MRF and MRF with rotational friction dampers were modeled that had been experimentally tested and reported in previous experimental research and a good agreement was observed. The behavior of these dampers in frames of 3-, 6-, and 9-story was studied by modeling the damper directly. Nonlinear time history dynamic analysis was used. It was observed that by increasing the number of stories in the buildings, rotational friction dampers should be used to perform properly against earthquakes. The installation of rotational friction dampers in steel moment-resisting frames shows that the drift ratio between the floors is reduced and the seismic performance of these frames is improved.

Development of miniature bar-type structural fuses with cold formed bolted connections

  • Guan, Dongzhi;Yang, Sen;Jia, Liang-Jiu;Guo, Zhengxing
    • Steel and Composite Structures
    • /
    • v.34 no.1
    • /
    • pp.53-73
    • /
    • 2020
  • A novel all-steel miniature bar-type structural fuse (MBSF) with cold formed bolted connections is developed in this study, which consists of a central energy dissipation core cut from a smooth round bar, an external confining tube and nuts. Three types of cross sections for the central energy dissipation core, i.e., triple-cut, double-cut and single-cut cross sections, were studied. Totally 18 specimens were axially tested under either symmetric or asymmetric cyclic loading histories, where the parameters such as cut cross sectional area ratio, length of the yielding portion and cross sectional type were investigated. Numerical simulation of 2 representative specimens were also conducted. An analytical model to evaluate the bending failure at the elastic portion was proposed, and a design method to avoid this failure mode was also presented. The experimental results show that the proposed MBSFs exhibit satisfactory hysteretic performance under both the two cyclic loading histories. Average strain values of 8% and 4% are found to be respectively suitable for designing the new MBSFs as the ultimate strain under the symmetric and asymmetric cyclic loadings.

Brace-type shear fuses for seismic control of long-span three-tower self-anchored suspension bridge

  • Shao, Feifei;Jia, Liangjiu;Ge, Hanbin
    • Structural Engineering and Mechanics
    • /
    • v.81 no.2
    • /
    • pp.147-161
    • /
    • 2022
  • The Brace-Type Shear Fuse (BSF) device is a newly proposed steel damper with excellent cumulative ductility and stable energy dissipation. In consideration of the current situation where there are not many alternatives for transversal seismic devices used in long-span three-tower self-anchored bridges (TSSBs), this paper implements improved BSFs into the world's longest TSSB, named Jinan Fenghuang Yellow River Bridge. The new details of the BSF are developed for the TSSB, and the force-displacement hysteretic curves of the BSFs are obtained using finite element (FE) simulations. A three-dimensional refined finite element model for the research TSSB was established in SAP2000, and the effects of BSFs on dynamic characteristics and seismic response of the TSSB under different site conditions were investigated by the numerical simulation method. The results show that remarkable controlling effects of BSFs on seismic response of TSSBs under different site conditions were obtained. Compared with the case without BSFs, the TSSB installed with BSFs has mitigation ratios of the tower top displacement, lateral girder displacement, tower bending moment and tower shear force exceeding 95%, 78%, 330% and 346%, respectively. Meanwhile, BSFs have a sufficient restoring force mechanism with a minor post-earthquake residual displacement. The proposed BSFs exhibit good application prospects in long-span TSSBs.