• Title/Summary/Keyword: fusarium silt

Search Result 5, Processing Time 0.019 seconds

Studies on Cross Protection of Fusarium Wilt of Cucumber IV. Protective Effect by a Nonpathogenic Isolate of Fusarium oxysporum in a Greenhouse and Fields (오이 덩굴쪼김병의 교차보호에 관한 연구 IV. 비병원성 Fusarium oxysporum 접종에 의한 온실과 포장에서의 방제효과)

  • 양성석;김충회
    • Korean Journal Plant Pathology
    • /
    • v.12 no.2
    • /
    • pp.137-141
    • /
    • 1996
  • 오이에서 분리한 비병원성 Fusarium oxysporum 균주 4-1은 온실에서 오이에서 선접종하였을 때 덩굴쪼김병에 안정적인 방제효과를 보여 세 번의 시험에서 그 방제가가 67~100%에 달하였다. 이 균주는 접종후 90일에도 오이 뿌리에서 높은 빈도로 재분리 되었으며 g 토양당 분생포자 농도가 10\ulcorner개 이상의 높은 농도로 접종하였을 때는 뿌리의 갈변현상을 초래하였다. 1993년부터 1995년에 걸친 세 번의 포장시험에서 이 균주는 오이덩굴쪼김병의 발생을 무처리 발병율 56%, 11%, 35%에 비해 18%, 1%, 8%로 각각 억제하였다.

  • PDF

Studies on the Root Rot of Ginseng - (IV) Distribution of Fungi and Fusarium sp. Population in Ginseng Cultivation Soil - (인삼근부병(人蔘根腐病)에 관(關)한 연구(硏究) - (IV) 인삼재배토양중(人蔘栽培土壤中)의 균류(菌類) 및 Fusarium sp.의 분포(分布)에 관(關)하여 -)

  • Kim, Jong-Hee;Lee, Min-Woong;Kim, Gwang-Po
    • The Korean Journal of Mycology
    • /
    • v.2 no.1
    • /
    • pp.15-19
    • /
    • 1974
  • A severe ginseng root rot disease was occurred and became widespraed in 1973 affecting the ginseng cultivating plot around Kangwha and Gimpo-Gun of Kyunggi province. Soil samples were collected from the area of Wolgot-Myun, Gimpo-Gun, Kuunggi-Do, 1974. We examined general fungi and Fusarium sp. in soil layers and also in different kinds of soil of respective diseased, uncultivated and healthy areas, and found the following results. 1. In the diseased and uncultivated area, the content of moisture, organic matter and silt was greater than in the healthy area. 2. Contray to the above, the healthy area contained a greater amount of inorganic elements such as $P_2O_5$, K,Ca and of soil particle such as Cs and Fs. The degree of pH and content of Mg were even in the three types of soils. 3. General fungi were found in abundance in the diseased and uncultivated soils. It was observed that in all types of areas, general fungi reside in abundance in the rhizosphere, i.e., 10-15cm layers and that the closer the surface, the greater the numbers of fungi. 4. A great number of Fusarium sp. was found in the uncultivated area, and followed diseased and healthy areas. It was observed that in all types of areas, Fusarium sp. distributed in abundance in rhizosphere and that the closer the surface, the greater the numbers of Fusarium sp., with the numbers decreasing as the soil layers increase.

  • PDF

Spore Germination of Some Plant Pathogenic Fungi under Different Soil Conditions in Relation to Soil Fungistasis (토양조건에 따른 몇가지 식물병원균의 포자발아와 토양정균 현상)

  • Lee Min Woong;Choi Hae Jung;Shim Jae Ouk
    • Korean Journal Plant Pathology
    • /
    • v.1 no.3
    • /
    • pp.157-164
    • /
    • 1985
  • Some interactions in various soil conditions, numbers of microbial populations, root rot disease development and rates of spore germiation in three different location of soils were investigated. The calcium and magnesium contents were higher in replanted fields of ginseng (Panax ginseng) at Goesan. Potassium contents were high in replanted field at Poonggi and textural class of the soils was silt loam except for silt clay loam in first cultured field of ginseng at Goesan. For the germination process of Fusarium solani, F. moniliforme, F. oxysporum, and Alternaria panax, the percentage germination of fungal spores was high in double distilled water and Pfeffer's solution as media, whereas the lower rate of germination of spores was observed in soil extracts. Numbers of bacteria were high in replanted field soil at Gumsan, and propagules of fungi in replanted fields at Gumsan and Poonggi were higher than other soils, but higher numbers of actinomycetes were found in the first cultured field of ginseng at Goesan and Poonggi. Fungistasis was induced by higher microbial populations present in soil that was initiated when amended with garlic stalk, crushed bean and ginseng leaves. On the other hand, there was no fungistasis in soil amended with wheat and barley straw, and this tendency was a little difference on the soil sample.

  • PDF

Case study of good soil management in plastic film-house cultivation (시설하우스 재배농가의 우수토양관리 사례연구)

  • Hyun, Byung-Keun;Kim, Lee-Yul;Kim, Moo-Sung;Cho, Hyun-Jun
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.34 no.2
    • /
    • pp.98-104
    • /
    • 2001
  • Cultivation area of the plastic film-house has been continuously increased with the increase of consumers' income. Intensive land use without fallowing or crop rotation caused severe problem such as salt accumulation in soils and in turn retarded growth and low productivity. This study was carried out to solve them derived from longterm intensive farming practices. Seven farmers who are practicing plastic film-house cultivation were recommended for case study by municipal government and selected for their excellency of cultivation and soil management. The cultivation periods of these systems were in the range of 5 to 40 years in the regions mainly located in alluvial soil cultivated with cucumber, tomato and red pepper. The soils texture of the excellent farmers' fields were silt loam or sandy loam, ranged from 7 to 15 percents of clay contents. Soil bulk density, depth of plowing layer and soil aggregates contents of the farmers' soils were 0.89, 23.1 cm, 61.6% whereas those in neighboring soils were 1.10, 17.8 cm, 54.2 %, respectively. And pH, OM and $NO_3-N$ of the farmers' soils also were better than those of neighboring soils. There was no difference in population densities of nematode between the good farmers' and neighboring soils, but actinomyces and Fusarium densities of recommended farmers' soils were better than neighboring soils. The major farming practices by the good farmers were characterized by deep plowing with flooding, amendment of crude organic matter, and reduction of chemical fertilizer application before transplanting, and also drip irrigation and liquid manure application after planting. They also conducted solar sterilization with or without flooding, removal of plastic films during rainy days and culturing rice or corn as rotation crops to avoid the problems mentioned above.

  • PDF

Nature of Suppressiveness and Conduciveness of Some plant pathogens in Soils (토양내(土壤內) 식물(植物) 병원균(病原菌)의 발병억제(發病抑制) 및 유발성질(誘發性質))

  • Shim, Jae-Ouk;Lee, Min-Woong
    • The Korean Journal of Mycology
    • /
    • v.18 no.3
    • /
    • pp.164-177
    • /
    • 1990
  • This study was carried out to obtain some useful data for increasing an effective ginseng production. There was a direct relationship (r=0.2645) between spore germination of Fusarium solani and soil pH, and (r=0.315) between Cylindrocarpon destructans and soil pH. On the other hand, there was a direct relationship (r=0.19) between relative hyphal growth of Rhizoctonia solani and soil pH. There was a direct relationship (r=0.21) between number of total bacteria and F. solani, (r=0.37) between actinomycetes and F. solani and (r=0.20) between celluloytic bacteria and F. solani. However, there was an inverse relationship (r=-0.20) between number of total fungi and F. solani. There was a direct relationship (r=0.24) between number of actinomycetes and R. solani. Each ginseng pathogen-suppressive soil screened was 40 in F. solani, 20 in C. destructans and 9 soil samples in R. solani among 146 soil samples, respectively. The mean contents of K, Ca and Mg were fairly lower in each ginseng pathogen-suppressive soil than conducive soil, whereas Na were somewhat lower. The mean contents of organic matter were over 2 times higher in each ginseng pathogen-suppressive soil than conducive soil. The mean contents of phosphate were fairly lower in F. solani and R. solani-suppressive soil than conducive soil and, on the other hand, were somewhat higher in C. destructans-suppressive soil than conducive soil. The mean soil pH was somewhat lower in each ginseng pathogen-suppressive soil than conducive soil. The mean contents of sand were about 2 times higher in each ginseng pathogen­suppressive soil than conducive soil, whereas silt and clay were somewhat lower. The microbial numbers of total bacteria, total fungi and celluloytic fungi were higher in F. solani-suppressive soil than conducive soil, whereas actinomycetes and celluloytic bacteria were lower. Each microbial number of total bacteria or total fungi indicated a significant difference (p=0.05) between F. solani­suppressive and conducive soil, and the microbial number of actinomycetes was a highly significant difference (p=0.01) between F. solani-suppressive and conducive soil. The microbial numbers of total bacteria, total fungi, actinomycetes and celluloytic fungi were higher in C. destructans-suppressive soil than conducive soil, whereas celluloytic bacteria were about 2 times lower. On the other hand, the microbial numbers of total fungi were higher in R. solani-suppressive soil than conducive soil, whereas total bacteria, actinomycetes, celluloytic bacteria and celluloytic fungi were lower. Fourteen of 16 F. solani-suppressive soils tested were suppressive to ginseng root rot, whereas fifteen of 16 C. destructans-suppressive soils were suppressive. Ginseng root rots of ginseng disease-suppressive soils were in the range of 1.0-17.4% in F. solani-suppressive soil and 0.2-20.4% in C. destructans-suppressive soil, respectively.

  • PDF