• Title/Summary/Keyword: furnace cooling

Search Result 165, Processing Time 0.029 seconds

Electric furnace development for back lights (백라이트를 위한 전기로 개발에 관한 연구)

  • Kim, Soo-Yong;Lee, Oh-Keol;Kim, Sang-Hyo
    • Proceedings of the KIPE Conference
    • /
    • 2001.07a
    • /
    • pp.94-96
    • /
    • 2001
  • As a batch Type device, this machine is contrive to seal glass plates for plasma BLU (Back Light Unit) by indirect heating from electric heaters. In order to maintain the heating / cooling Chambers clean, this machine uses a muffle formation. The components of the machine are listed bellow.

  • PDF

Reaction Characteristics of the CAC with Various Gypsum Type and Mixing Ratio (석고 종류 및 혼입률에 따른 CAC 반응 특성)

  • Choi, Sun-Mi;Kim, Jin-Man;Koo, Ja-Sul
    • Resources Recycling
    • /
    • v.30 no.1
    • /
    • pp.83-91
    • /
    • 2021
  • Ladle furnace slag is a byproduct of the steel-making process, and it contains the mineral β-C2Sandtherapid-settingmineral (dependingonwhichreducingagenthasbeenused). Ladle furnace slag is often treated through slow cooling, which causes the slag to lose its reactivity. In this study, the properties of air-quenched CAC and pulverized ladle furnace slag containing gypsum were evaluated, and the optimal mixing ratio was determined for broadening their usage. Consequently, the properties of CAC aredemonstrated by the dissolution of gypsum after a period of three hours and the content of gypsum after a period of one day. The optimal mixing ratio of anhydrate and hemihydrate gypsum is found to be within 30% and that of dihydrate gypsum is found to be higher than 35%. Furthermore, based on the results of CAC with dihydrate gypsum, the applicability of the by-product dihydrate gypsum has been verified.

Analysis with Directional Solidification in Silicon Melting Process (실리콘 용융 공정에서 방향성 응고에 관한 특성 분석)

  • Cho, Hyun-Seob
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.3
    • /
    • pp.1707-1710
    • /
    • 2014
  • This paper is the study for the directional solidification of the ingot through the thermal analysis simulation and structural change of casting furnace. The activation analysis of metal impurities were also detected the total number of 10 different metals, but the concentration distribution showed no significant positional deviations in the same position from the top to the bottom. With the results of thermal analysis simulation, the silicon as a whole has reached the melting temperature as the retention time 80 min. The best cooling conditions showed at the upper cooling temperature $1,400^{\circ}C$ and cooling time 60min. The fabricated wafers showed the superior etching result at the grain boundary than that of existing commercial wafers.

The effect of cooling rate on the nuclei of OISF formation in Si single crystals (실리콘 단결정에서 산화적층결함의 핵생성에 미치는 냉각속도의 영향)

  • 하태석;김병국;김종관;윤종규
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.6 no.3
    • /
    • pp.360-367
    • /
    • 1996
  • The OISF (Oxidation Induced Stacking Fault)is expected to affect the electrical properties in Si single crystals, and the nuclei of OISF are believed to be formed during the crystal growing process. Initial oxygen concentration, dopant type and its density, and cooling rate are regareded as major factors on OISF formation. In this study, the variations of OISF density under various cooling rate were investigated. Si single crystal was heated to $1400^{\circ}C$ in Ar ambient and cooled down to room temperature at different cooling rate, using horizontal tube furnace. After that, they were oxidized at $1150^{\circ}C$, and then, OISF was observed with optical microscope. The relation between oxide procipitates and OISF nucleation was investigated by FTIR analysis. As a result, it was found that there exists the intermediate cooling rate range in which OISF nucleation is highly enhanced. And also, it was found that OISF nucleation is closely related with silicon oxide procipitation in Si single crystals.

  • PDF

Prediction of Solidification Path in Al-Si-Fe Ternary System and Experimental Verification (Al-Si-Fe 3원계 조성의 응고경로 예측 및 실험적 검증)

  • Lee, Sang-Hwan;Lee, Sang-Mok
    • Journal of Korea Foundry Society
    • /
    • v.30 no.1
    • /
    • pp.34-45
    • /
    • 2010
  • The effects of alloy elements and cooling rate on the solidification path and the formation behavior of $\beta$ phase in Fe-containing Al-Si alloys were studied based on the thermodynamic analysis and the pertinent experiments. The thermodynamic calculation was systematically performed by using Thermo-Calc program. For the thermodynamic analysis in high alloy region of Al-Si-Fe ternary system, a thermodynamic database for Thermo-Calc was correctly updated and revised by the collected up-to-date references. For the thermodynamic-based prediction of various solidification paths in Fe-containing Al-Si system, liquidus projection of Al-Si-Fe ternary system, including isotherms, invariant, monovariant, bivariant reactions and equilibrium temperatures, was calculated and analyzed as functions of composition and temperature. The calculated results were compared to the experimental results using various casting specimens. In order to analyze various solidification sequences as functions of Si and Fe content, 4 representative alloy compositions, low Fe content in both low and high Si contents and high Fe content again in both low and high Si contents, were designed in this study. For better understanding of the influence of cooling rate on the formation behavior of $\beta$ phase, 4 alloys were solidified under furnace and rapidly cooled conditions. Cooling curves of solidified alloys were recorded by thermal analysis. Various important solidification events were evaluated using the first derivative-cooling curves. Microstructures of the casting samples were studied by the combined analysis of optical microscopy (OM) and scanning electron microscopy (SEM).

A Study on Annealing Cycle Control Temperature of Hi - CON/2 BAF and HNx BAF (Hi-CON/H2 BAF와 HNx BAF의 소둔사이클 제어온도에 관한 연구)

  • 김문경
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.18 no.1
    • /
    • pp.114-122
    • /
    • 1994
  • A cold temperature control system for the BAF(batch annealing furnace) has been established in order to reduce energy consumption to imrpove productivity and stabilize the properties of products. Therefore we confirmed a relation between annealing cycle time and atmospheric gas, changing annealing cycle time according to BAF temperature with time during heating and actual temperature measurements cold spot during soaking. The results of the temperature variation effect on the batch annealing are as follows. 1) Cooling rate is increasing gradually with increasing atmospheric gas flow, but heating rate is hardly increasing without atmospheric gas component. Heating time is reduced to one half with increasing atmospheric gas flow rate and changing of atmospheric gas component from HNx to Ax gas and annealing cycle time is reduce to 2.7 times. 2) With enlarging the difference between furnace temperature and soaking temperature at the HNx BAF, heating time becomes short, but cooling time is indifferent. 3) If temperature difference of 300.deg. C in the temperature change of cold spot according to the annealing cycle control temperature, Hi-CON/H2BAF is interchanging at each other at 26hours, but HNxBAF at 50 hours. 4) Soaking time at batch annealing cycle determination is made a decision by the input coil width, and soaking time for quality homogenization of 1219 mm width coil must be 2.5 hours longer then that of 914mm width coil for the same coil weight at Hi-CON/H2BAF. But, it is necessary to make 2 hours longer at HNxBAF.

  • PDF

The Effect of Solidification Rates and Thermal Gradients on Directionally Solidified Microstructure in the Ni-base Superalloy GTD111M (GTD111M 초내열합금에서 응고속도 및 온도구배가 일방향응고 조직 에 미치는 영향)

  • Ye, Dae-Hee;Kim, Cyun-Choul;Lee, Je-Hyun;Yoo, Young-Soo;Jo, Chang-Yong
    • Korean Journal of Materials Research
    • /
    • v.12 no.12
    • /
    • pp.897-903
    • /
    • 2002
  • Morphological evolution and growth mechanism at the solid/liquid interface during solidification were investigated in the Ni-base superalloy GTD111M by directional soldification and quenching(DSQ) technique. The experiments were conducted by changing solidification rate(V) and thermal gradient(G) which are major solidification process variables. High thermal gradient condition could be obtained by increasing the furnace temperature and closely attaching the heating and cooling zones in the Bridgeman type furnace. The dendritic/equiaxed transition was found in the G/V value lower than $0.05$\times$10{^3}^{\circ}C$s/$\textrm{mm}^2$, and the planar interface of the MC-${\gamma}$ eutectic was found under $17 $\times$ 10{^3}^{\circ}C$ s/$\textrm{mm}^2$. It was confirmed that the dendrite spacing depended on the cooling rate(GV), and the primary spacing was affected by the thermal gradient more than solidification rate. The dendrite lengths were decreased as increasing the thermal graditne, and the dendrite tip temperature was close to the liquidus temperature at $50 \mu\textrm{m}$/s.

Numerical Study on the Ventilation Performance in the Boiler Building with and without Roof Openings (루프 환기구에 따른 보일러빌딩 내부 환기성능에 관한 수치적 연구)

  • Choi, Hoon Ki;Yoo, Geun Jong;Lee, Sang Heon
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.26 no.3
    • /
    • pp.342-349
    • /
    • 2016
  • Objectives: The objective of this paper is to find flow and heat transfer characteristics numerically in boiler buildings for three different ventilation window configurations. Methods: Turbulent natural convection flow in boiler buildings with a constant heating wall temperature was analyzed numerically. Governing equations were solved with standard finite-volume method using the SIMPLE algorithm. Conclusions: Flow and heat transfer characteristics are found for three different ventilation types. In the lower area under furnace, velocity and temperature distributions show similar patterns among the three different ventilation types. In the upper area over furnace, however, air flow is well mixed with lower peak temperatures for types B and C, which have roof ventilation windows, compared to type A which has side wall louvers only. Also, type B, with a single large roof window, shows better ventilation effect than does type C with its distribution roof windows.

Experiment on the Vitrification of Nonflammable Wastes Using AP-200L Plasma Torch (AP-200L 토치를 이용한 비가연성 방사성폐기물 고온용융처리)

  • 최종락;유병수;김천우;박종길;하종현
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2003.11a
    • /
    • pp.48-53
    • /
    • 2003
  • The high temperature melting test for nonflammable wastes using a plasma torch was conducted. The AP-200L hollow cathode type plasma torch was installed at the pilot plasma melting furnace in NETEC. The surrogates were prepared to simulate concrete, soil and their mixture with steel. The experimental conditions such as feeding rate, the distance between melts surface and torch nozzle, torch rotation speed, gas flow rate and pressure in the furnace were decided. Basic parameters such as temperatures of cooling waters, off-gas and torch power were measured. The vitrified samples were analyzed by SEM/EDS.

  • PDF