• 제목/요약/키워드: furnace cooling

검색결과 165건 처리시간 0.025초

핫 프레스 벤딩 공정에서 냉각회로 최적화를 위한 공정변수의 평가 (Evaluation of Design Parameters for Optimizing the Cooling Channel in Hot Press Bending Process)

  • 남기주;최홍석;고대철;김병민
    • 대한기계학회논문집A
    • /
    • 제33권11호
    • /
    • pp.1267-1273
    • /
    • 2009
  • Hot press forming can produce high-strength components by rapidly cooling between closed punch and die after hot forming using quenchable boron steel austenized in a furnace. In the hot press forming process, the cooling rate is influenced by the size, position and arrangement of the cooling channel and the file condition of cooling water in the die. Also, mechanical properties of the final components and operation time are related to cooling rate. Therefore, the design of optimized cooling channel is one of the most important works. In this paper, the effect of position and size of the cooling channel on the cooling rate was investigated by using design of experiment and FE analysis in hot press bending process. Therefore the optimum cooling channel ratio was presented in the HPB.

마그네슘의 진동감쇠능에 미치는 냉각 속도의 영향 (Effect of Cooling Rate on Damping Capacity of Magnesium)

  • 전중환
    • 열처리공학회지
    • /
    • 제30권6호
    • /
    • pp.258-263
    • /
    • 2017
  • The effect of cooling rate on the damping capacity of pure Mg was studied. Two Mg samples with different cooling rates were prepared by heat treatment at 873 K for 24 h, followed by water quenching and by furnace cooling to room temperature, respectively. The average grain sizes of the Mg samples were almost identical regardless of the cooling rate, but more twins were observed in the sample with faster cooling rate. The calculated vacancy fraction was higher in the fast cooling sample than the slow cooling one. It is noted that the fast cooling sample exhibited lower damping capacity both in the strain-amplitude independent and strain-amplitude dependent regions. Higher values of vacancy concentration and number density of twins in the fast cooling sample are considered to be responsible for the deteriorated damping capacity in the strain-amplitude independent and strain-amplitude dependent regions, respectively.

Process Technology of the Direct Separation and Recovery of Iron and Zinc Metals Contained in High Temperature EAF Exhaust Gas

  • Furukawa, Takeshi;Sasamoto, Hirohiko;Isozaki, Shinichi;Tanno, Fumio
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2001년도 The 6th International Symposium of East Asian Resources Recycling Technology
    • /
    • pp.393-397
    • /
    • 2001
  • The innovatory process, that is the direct separation and recovery of the iron and zinc metals contained in the high temperature exhaust gas generated from the electric arc furnace fer the inn scrap melting and/or the dust treatment, has been proposed. This proposed process consists of the moving coke bed filter that is directly connected to the electric furnace, and the following heavy metal condenser. The exhaust gas passes through the filter and the condenser right after exhausting from the electric furnace. The moving coke bed filter is being controlled at about 1000℃ and collects iron and slag components contained in the high temperature exhaust gas. Heavy metals such as zinc and lead pass through the filter as vapor. Based on the thermodynamic considerations, the iron oxide and the zinc oxide are reduced in the filter. The solution loss reaction rate is comparatively low at about 1000℃ in the coke bed filter by the analysis using the mathematical simulation model. The heavy metal condenser is installed in the position after the coke bed filter, and rapidly cools the gas from about 1000℃ to 450℃ by a full of the cooling medium like the solid ceramic ball in addition to the cooling from the wall. The zinc and lead vapor condense and separate f개m the gas in a liquid state. The investigation of the characteristics of the exhaust gas of the commercial electric arc furnace, the fundamental experiments of the laboratory scale and the bench scale ensured the formation of this proposed process. A small-scale pilot plant examination is carrying out at present to confirm the formation of the process. It is certain that the dust generation of the electric arc furnace is extremely decreased, and it can save the energy consumption of usual dust treatment processes by the realization of this process.

  • PDF

Mn-Al계 합금의 열처리에 따른 미세조직 변화와 지기적 특성(제1보) -Mn-Al-Cu 합금을 중심으로- (The Magnetic Characteristics and Microstructure of Mn-A1 System Alloys(1st Report) -Focused on the Mn-A1 Alloys-)

  • 방만규;양현수;곽창섭
    • 한국정밀공학회지
    • /
    • 제5권4호
    • /
    • pp.48-58
    • /
    • 1988
  • This study was undertaken to observe the formation behavior of ferro- magnetic phase in Mn-Al-Cu Alloys. The alloy selected for this investigation was 70% Mn-29% Al-1% Cu. This pre-allyed pig was prepared to the cylinderical castings using an Induction furnace after homogenizing at $1100^{\circ}C$ for 2hr, the specimens were cooled by cooling methods. Subwequent isothermal heat treatments were followed at $550^{\circ}C$ for various periods of time at predetermined(1-1000min). The formation behavior of ferromagnetic phase was investigated by measurements of magnetic properties of the specimens at each stage of heat treatment, and optical microscopic esamination and X-Ray diffraction analyses were also employed. By this basic experimental results, the conclusions are as follows 1) In order to obtain much amount of ferromagnetic phase, the optimum average cooling rate was about 7.35-$16.4^{\circ}C$/sec($1100^{\circ}C$-$600^{\circ}C$). 2) We verified the decomposition of {\tau} phase to {\beta} -Mn and {\gamma} , as the specimens were homogenized at $1100^{\circ}C$ for 12hr, then heat-treased at $550^{\circ}C$ for 1-1000min. 3) A condition of optimum heat treatments in Mn-Al-Cu permanent mag-netic alloys showed that after homogenizing at $1100^{\circ}C$ for 2hr, the speciments were cooled in air or furnace(A) and subsequent heat treatments at $550^{\circ}C$ for 1-30min. The maximum magnetic properties were measured as follows: Air cooling; Br=1200(Gause), bHc=100(oe), (BH)max=0.07(MGOe) Furnace cooling(A);Br=950(Gauss), bhe=80(Oe), (BH)max=0.05(MGOe)

  • PDF

반도체용 저온 열처리로의 Flat Zone 확장 및 온도편차 감소에 관한 연구 (Study on the Flat Zone Expansion and Temperature Deviation Reduction of Low Temperature Furnace for Semiconductor Process)

  • 주강우;심승술;장혁;이유영;김광선
    • 반도체디스플레이기술학회지
    • /
    • 제13권4호
    • /
    • pp.83-90
    • /
    • 2014
  • This paper is about the yield rate of lower temperature furnace for wafer heat-treatment. The flat-zone that the temperature in furnace has uniform distribution specific area is the significant variable to the yield rate. In this study, we researched about the ways how to widen the flat zone in the furnace using CFD. As a result, we confirmed that the characteristic of the flat-zone was changed when SCU(Super Cooling Unit) was used. We considered temperature control with above.

헬륨가스 주입식 유리섬유 냉각장치의 냉각성능 해석 (COMPUTATIONAL ANALYSIS ON THE COOLING PERFORMANCE OF GLASS FIBER COOLING UNIT WITH HELIUM GAS INJECTION)

  • 오일석;김동주;우마로프 알리세르;곽호상;김경진
    • 한국전산유체공학회지
    • /
    • 제16권4호
    • /
    • pp.110-115
    • /
    • 2011
  • A modern optical fiber manufacturing process requires the sufficient cooling of glass fibers freshly drawn from the heated and softened silica preform in the furnace, since the inadequately cooled glass fibers are known to cause improper polymer resin coating on the fiber surface and to adversely affect the product quality of optical fibers. In order to greatly enhance the fiber cooling effectiveness at increasingly high fiber drawing speed, it is necessary to use a dedicated glass fiber cooling unit with helium gas injection between glass fiber drawing and coating processes. The present numerical study features a series of three-dimensional flow and heat transfer computations on the cooling gas and the fast moving glass fiber to analyze the cooling performance of glass fiber cooling unit, in which the helium is supplied through the discretely located rectangular injection holes. The air entrainment into the cooling unit at the fiber inlet is also included in the computational model and it is found to be critical in determining the helium purity in the cooling gas and the cooling effectiveness on glass fiber. The effects of fiber drawing speed and helium injection rate on the helium purity decrease by air entrainment and the glass fiber cooling are also investigated and discussed.

슈퍼 듀플렉스 스테인리스강의 응고·냉각 시 상석출에 미치는 냉각속도의 영향 (Influence of the Cooling Rate on the Phase Precipitation of Super Duplex Stainless Steel)

  • 장은석;김기영;김석준
    • 한국주조공학회지
    • /
    • 제35권2호
    • /
    • pp.23-28
    • /
    • 2015
  • This work presents the effect of the cooling rate on the precipitation of super duplex stainless steel. Specimens of super duplex stainless steel with a specific composition were cooled at various cooling rates after being melted at $1550^{\circ}C$ in a directional solidification furnace. Ferrite (${\delta}$), Austenite (${\gamma}$), Sigma (${\sigma}$), and Chi (${\chi}$) phases were precipitated when the cooling rate was lower than 0.22 K/s. When the cooling rate was 0.22 K/s or faster, ${\sigma}$ and ${\chi}$ phases were not precipitated.

부식 및 스케일 억제제에 의한 냉각수 수질향상 (Improvement of Cooling Water Quality by Corrosion and Scale Inhibitor)

  • 조관형;우달식;황병기
    • 한국환경과학회지
    • /
    • 제18권2호
    • /
    • pp.187-195
    • /
    • 2009
  • This study was investigated to control the corrosion and scale at the cooling water system in steel works. Laboratory and field tests were performed for the indirect cooling water system of plate mill. Throughout the experiment, various factors such as leakage of pipes, heating rate and capacity, and the reaction between existing and substitute inhibitors were carefully monitored. The results showed that the harmful effect of high temperature could be minimized, and satisfactory corrosion/scale controls were effectively achieved using inhibitor, even at the increased temperature of $80^{\circ}C$. The batch and field tests in the gas scrubbing cooling water system of blast furnace and cooling water system of corex plant indicated that the new inhibitor was more effective for the prevention of corrosion and scale than the existing one.

고온강재의 담금질 전열에 관한 연구 (A Study on the Heat Transfer of the High Temperature Metals in Quenching - The Latent Heat of Phase Transformation and Cooling Curves -)

  • 윤석훈
    • 수산해양기술연구
    • /
    • 제27권4호
    • /
    • pp.321-327
    • /
    • 1991
  • Experiments of quenching were made with cylindrical specimens of carbon steel S45C of diameters from 12 to 30mm were performed. The specimens were heated by electric furnace and quenched by immersion method. In order to analyze the temperature profile(cooling curves) of carbon steel including the latent heat of phase transformation, nonlinear heat conduction problem was calculated by the numerical method of inverse heat conduction problem using the apparent heat capacity method. The difference between the calculated and the experimented cooling curves was caused by the latent heat of phase transformation, and the effects of the latent heat were especially manifest at the cooling curves of center of specimens. The temperature and the quantity of the latent heat of phase transformation depend on the cooling speed at A sub(1) transformation point, and the region for cooling speed to become zero was caused by the latent heat of phase transformation.

  • PDF

도재소성 시 냉각속도가 전부도재관의 색조에 미치는 영향 (Effect of Shade on All Ceramic Restoration based Zirconia according to Cooling rate on Firing)

  • 전진훈;민병국;황재선;김웅철
    • 대한치과기공학회지
    • /
    • 제37권4호
    • /
    • pp.199-203
    • /
    • 2015
  • Purpose: The purpose of this in vitro study was to evaluation the effect of shade on all ceramic restoration based zirconia according to cooling rate on Firing. Methods: 10 specimens applied to the dentin porcelain were made on the zirconia. After 5 specimens of the first group were burned in the furnace, these were put out rapidly. And after 5 specimens of the second group were burned in the furnace, these were put out slowly later 15 min. All specimens were measured $L^*$, $a^*$, $b^*$ using spectrophotometer, there were calculated 10 mean(SD) of descriptive statistics with SPSS program. These data were used for ${\Delta}E^*$ with color difference equation. Independent t tests were performed between 2 groups. Results: $L^*$, $a^*$, $b^*$ of 2 groups was statistically significant respectively (p<0.001), ${\Delta}E^*$ was 4.55 value. Conclusion: This study showed effect of shade on all ceramic restoration based zirconia according to cooling rate on Firing.