• Title/Summary/Keyword: furnace

Search Result 3,794, Processing Time 0.038 seconds

A Study on the Determinational Method of Slag Admixture Replacement Ratio in Fresh Concrete with Blast-Furnace Slag Powder (고로슬래그미분말을 첨가한 콘크리트의 슬래그 정량분석에 대한 연구)

  • 박유신;김승진;홍종성;김대영;김장수
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10b
    • /
    • pp.951-956
    • /
    • 2000
  • Blast furnace slag powder(BFS) is potential hydration material, and that usage is increased the construction. But, the amount of BFS is important factor with the properties of concrete. The determinational method of slag powder experiments by salicylic acid-methyl alcohol solution method. From these results we can determine the amount of slag powder with blaine 4, 000 and 6, 000 in fresh concrete.

  • PDF

A Study on the Utilization of mineral Admixture to Improve the Properties of Concrete (콘크리트의 제 성질 향상을 위한 혼화재 활용에 대한 연구)

  • 문한영;문대중;신화철
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1997.04a
    • /
    • pp.124-128
    • /
    • 1997
  • In order tohave a betterunderstanding of thefavorable effect ofground granulated blast-furnace slag and fly ash, slump loss, temperature risingand compressive strength of concrete were investigated into diffrent conditions. When slag was mixed with ordinary portland cement as30%, slump loss gotto some 18% at 60min, maximum temperatureto some $43^{\cire}C$ at 180min, compressive strength similar to that of ordinary portland concrete at 28 days. Therefore it wasnoted thatslump loss andmaximum teaperaturerising of concrete were very reduced according to ground granulated blast-furnace slag and fly ash mixed with ordinary portland cement.

  • PDF

An Evaluation of the Bond Performance and the Shear Behavior of Concrete Mixed with Hwang-toh (황토를 첨가한 콘크리트의 부착성능 및 전단거동 평가)

  • Jung Yeon Back;Yang Keun Hyeok;Hwang Hey Zoo;Chung Heon Soo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05a
    • /
    • pp.83-86
    • /
    • 2005
  • The object of this experimental study is to understand the bond performance and the shear behavior of concrete mixed with hwang-toh and blast-furnace slag. Main variables were the compressive strength according to replacement level of hwang-toh and blast-furnace slag. The results revealed that up to 20$\%$ of Hwang-toh the bond and the shear strength were improved.

  • PDF

New Energy Saving Technology of Electric Arc Furnace in Steel Making Industry (철강산업체 전기로(EAF) 설비에서 에너지절약 최신기술동향)

  • Oh, Dong-Whan;Park, Hyun-Kyu;Park, Tae-Joon;Im, Sang-Kug
    • Proceedings of the KIEE Conference
    • /
    • 2003.07a
    • /
    • pp.71-73
    • /
    • 2003
  • The paper discussed for energy saving technology of electric arc furnace (EAF) in steel making industry. The energy of EAF in steel making process is nearly 10% of total manufacturing cost. This paper is shown new trand of energy saving technology and future study analysis of technological evolution of the EAF by 2010 issued IISI.

  • PDF

Improving Phosphatability of BAF Cold Rolled Steel Sheet from Electric Furnace (전기로재 BAF 냉연강판의 자동차 인산염처리성 개선 연구)

  • Park, Sang-Jin;Kim, Jong-Gi;Mun, Man-Bin;Park, Jae-Seon;An, Jae-Cheon
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2007.04a
    • /
    • pp.31-32
    • /
    • 2007
  • 자동차 도장 전처리 공정 중 인산염처리는 소지와 도장층 사이의 밀착성을 향상시키고, 강판의 내식성을 향상시키는 목적으로 행하여진다. 인산염 조직이 치밀하게 형성되지 못하면 도장층 박리 등의 불량이 발생할 수 있다. 본 연구에서는 전기로재 BAF(Batch Annealing Furnace) 냉연강판의 인산염처리 특성에 대한 분석 및 개선안 도출 과정을 서술하였다.

  • PDF

A Study on the Utilization of Industrial Waste to Improve the Durability of Base Concrete (바탕콘크리트 내구성 향상을 위한 산업폐기물 활용에 관한 연구)

  • Kim, Dae-Geon
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2022.04a
    • /
    • pp.107-108
    • /
    • 2022
  • This study aims to solve environmental problems by reducing complex degradation and recycling industrial waste by utilizing waste fibers and blast furnace slags, which are industrial by-products. In addition, it is intended to secure long-term durability to reduce cracks. To this end, the disadvantages of fiber-reinforced concrete are to solve the problem of lowering liquidity and ensuring curing time, and to find the optimal combination when waste fibers and blast furnace slag are used together.

  • PDF

Experiments of electric furnace simulator for property prediction of the artificial lightweight aggregate sintered by rotary kiln (로타리킬른 소성 골재 물성예측을 위한 전기로 실험)

  • Ryu, Yug-Wang;Kim, Yoo-Taek
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.18 no.3
    • /
    • pp.125-130
    • /
    • 2008
  • If the properties of artificial lightweight aggregates produced by rotary kiln can be predicted by using a simulator equipped with a small electric furnace and a specially designed device for specimen movement, large amount of raw materials and plenty of test time can be saved to produce test products of lightweight aggregates. In this study a simulator for the accurate prediction of the artificial lightweight aggregates produced by rotary kiln was assembled by our own design and the properties of lightweight aggregates produced by both the simulator and rotary kiln were compared to speculate its usefulness. The average diameter of aggregates was 8 mm and atmosphere in the furnace was controlled by the amount of carbon powders. Specific gravity, absorption rate (%), black-core area in the cross-sectional view of both aggregates were measured and compared. Unlike oxydizing atmosphere, both specific gravity and absorption rate of the aggregates sintered at reducing atmosphere were increased with increasing carbon addition. It is concluded that the sintering atmosphere was the closest to that of the rotary kiln when the carbon addition was 0.7 g to make a reducing atmosphere in the furnace and the properties of both agreggates was also similar to each other.

Auto Temperature-Controlled System using Adaptive Fuzzy Controller for Gas Furnace (적응 퍼지 제어를 이용한 가스로 자동온도조절 시스템)

  • Kwon Hyeog-Soong;Kim Seon-Jong
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.7 no.3
    • /
    • pp.149-154
    • /
    • 2006
  • In this paper, for auto temperature-controlled, we developed a system that an adaptive fuzzy controller using fuzzy control rule base, fuzzy variable and fuzzy inference can get same results as an expert of temperature -controlled gas furnace system by experience and obtained a good result by experiment. It's results showed that temperature error is less than ${\pm}2^{\circ}C$ and widely used in the area of industrial fields. For measurement of error rate of sintered ceramic products between the manual system and the proposed system, we tested two times sample A and B respectively. We verified the improvement of error rate was mean 50.5% and 48.4% for each sample A and B. Through the experiments, we confirmed that it has very superior performance compared with the conventional gas furnace system by manual.

  • PDF

Estimation of the Removal Capacity for Cadmium and Calculation of Minimum Reaction Time of BOF Slag (제강슬래그의 카드뮴 제거능 평가 및 필요반응시간 결정)

  • Lee, Gwang-Hun;Kim, Eun-Hyup;Park, Jun-Boum;Oh, Myoung-Hak
    • Journal of the Korean Geotechnical Society
    • /
    • v.27 no.10
    • /
    • pp.5-12
    • /
    • 2011
  • This study was focused on the reactivity of furnace slag against cadmium to design the vertical drain method with reactive column for improving contaminated sea shore sediment. The kinetic sorption test was performed by changing the initial concentration and pH. Using pseudo-second-order model, the reactivity of furnace slag was quantitatively analyzed. Equilibrium removal amount ($q_e$) of furnace slag increased and rate constant ($k_2$) decreased with the increase of initial cadmium concentration. With the increase of pH, the equilibrium removal amount ($q_e$) and rate constant ($k_2$) increased in the same initial concentration. Required retention time was related to the inverse of the product of the equilibrium removal amount ($q_e$) multiplied by rate constant ($k_2$). The required retention time could be used to design the length of reactive column.

Prediction of concrete strength in presence of furnace slag and fly ash using Hybrid ANN-GA (Artificial Neural Network-Genetic Algorithm)

  • Shariati, Mahdi;Mafipour, Mohammad Saeed;Mehrabi, Peyman;Ahmadi, Masoud;Wakil, Karzan;Trung, Nguyen Thoi;Toghroli, Ali
    • Smart Structures and Systems
    • /
    • v.25 no.2
    • /
    • pp.183-195
    • /
    • 2020
  • Mineral admixtures have been widely used to produce concrete. Pozzolans have been utilized as partially replacement for Portland cement or blended cement in concrete based on the materials' properties and the concrete's desired effects. Several environmental problems associated with producing cement have led to partial replacement of cement with other pozzolans. Furnace slag and fly ash are two of the pozzolans which can be appropriately used as partial replacements for cement in concrete. However, replacing cement with these materials results in significant changes in the mechanical properties of concrete, more specifically, compressive strength. This paper aims to intelligently predict the compressive strength of concretes incorporating furnace slag and fly ash as partial replacements for cement. For this purpose, a database containing 1030 data sets with nine inputs (concrete mix design and age of concrete) and one output (the compressive strength) was collected. Instead of absolute values of inputs, their proportions were used. A hybrid artificial neural network-genetic algorithm (ANN-GA) was employed as a novel approach to conducting the study. The performance of the ANN-GA model is evaluated by another artificial neural network (ANN), which was developed and tuned via a conventional backpropagation (BP) algorithm. Results showed that not only an ANN-GA model can be developed and appropriately used for the compressive strength prediction of concrete but also it can lead to superior results in comparison with an ANN-BP model.