• Title/Summary/Keyword: furnace

Search Result 3,792, Processing Time 0.024 seconds

Characteristics of Eco-friendly Porous Concrete for Seawater Purification Using By-Products of Steel Industry (철강산업 부산물을 활용한 해수정화용 친환경 다공질콘크리트의 특성)

  • Han, Woonwoo;Lee, Byungjae
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.1
    • /
    • pp.1-7
    • /
    • 2020
  • As of 2018, Steel slag was generated approximately 24.23 million tons. Howeve, except blast furnace slag, steel slag is a typical by-product which does not have a clearly defined purpose in recycling. Thus, countries around the world are putting great efforts into developing a purpose for the recycling of steel slag. The vast habitat foundation of marine life has been destroyed due to recent reckless marine development and environment pollution, resulting in intensification of the decline of marine resources, and a solution to this issue is imperative. In order to propose a method to recycle large amounts of by-product slag into a material that can serve as an alternative to natural aggregate, the engineering properties and applicability for each mixing factor of environment friendly porous concrete as a material for the composition of seawater purification were in this study. Regarding the nutrient elution properties, it was clear that the nutrients continuously flowed out up to an immersion time by 8 months in natural seawater; the nitrogenous fertilizer displayed excellent elution properties in this regard.

Utilization of Blast Furnace Slag Quenched with Water as a Source of Silicate Fertilizer -III. Effect of Direct Application of Quenched Slag on Rice Yields (급냉광재(急冷鑛滓)의 비료화(肥料化)에 관(關)한 연구(硏究) -III. 수도(水稻)에 대(對)한 급냉광재(急冷鑛滓)의 직접시용(直接施用) 효과)

  • Lim, Dong-Kyu;Shin, Jae-Sung;Park, Young-Sun
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.18 no.4
    • /
    • pp.319-324
    • /
    • 1985
  • This study was designed to evaluate the feasibility of direct application of quenched slag, as a silicate fertilizer byproduct of iron and steel industry. A field experiment was conducted on a low silica content paddy soil and its effect was compared to over corresponding air-cooled slag of milled commercial silicate fertilizer on rice plant growth and yields. The yields of rice were slightly higher in the commercial air-cooled slag than in the quenched slag, however, there was no significant statistical difference. The silica content of rice plants at harvest was higher in commercial silicate fertilizer than that of quenched slag. The available soil silica was high in quenched slag at the early growing stage, however, at harvest higher in air-cooled slag, which meant that the quenched slag might release silica quickly in soil. This results indicated that the slag could be considered resource as a silicate fertilizer.

  • PDF

Electrical Resistivity of ITZ According to the Type of Aggregate (골재 종류별 시멘트 경화체 계면의 전기저항 특성)

  • Kim, Ho-Jin;Bae, Je Hyun;Jung, Young-Hoon;Park, Sun-Gyu
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.9 no.3
    • /
    • pp.268-275
    • /
    • 2021
  • The three factors that determine the strength of concrete are the strength of cement paste, aggregate and ITZ(Interfacial Transition Zone) between aggregate and cement paste. Out of these, the strength of ITZ is the most vulnerable. ITZ is formed in 10~50㎛, the ratio of calcium hydroxide is high, and CSH appears low ratio. A high calcium hydroxide ratio causes a decrease in the bond strength of ITZ. ITZ is due to further weak area. The problem of ITZ appears as a more disadvantageous factor when it used lightweight aggregate. The previous study of ITZ properties have measured interfacial toughness, identified influencing factors ITZ, and it progressed SEM and XRD analysis on cement matrix without using coarse aggregates. also it was identified microstructure using EMPA-BSE equipment. However, in previous studies, it is difficult to understand the microstructure and mechanical properties. Therefore, in this study, a method of measuring electrical resistance using EIS(Electrochemical Impedance Spectroscopy) measuring equipment was adopted to identify the ITZ between natural aggregate and lightweight aggregate, and it was tested the change of ITZ by surface coating of lightweight aggregate with ground granulated blast furnace slag. As a result, the compressive strength of natural aggregate and lightweight aggregate appear high strength of natural aggregate with high density, surface coating lightweight aggregate appear strength higher than natural aggregate. The electrical resistivity of ITZ according to the aggregate appeared difference.

The comparisons of layers and the effect of additional firings on flexural strength and translucency of 5Y-ZP (Translucent zirconia의 layer 간 비교 및 추가적인 소성이 굽힘강도, 투과도에 미치는 영향)

  • Kim, Hyung-Joon;Shin, Soo-Yeon
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.37 no.3
    • /
    • pp.111-122
    • /
    • 2021
  • Purpose: The purpose of this in vitro study was to investigate the flexural strength and translucency of three layers in 5Y-ZP and to assess the effect of additional firings on these properties. Materials and Methods: Sintered zirconia blocks were sectioned according to three layers : incisal, transition, and body. Disc-shaped specimens were fabricated from each layer. The diameter of specimens was 15.0 mm and each thickness of specimens for biaxial flexural strength test and translucency was 1.2 mm and 1.0 mm. The specimens were classified into subgroups according to the number of firing (0, 1, and 3 times; n = 10/subgroup) and the additional firings were performed under 900℃ using a furnace. Biaxial flexural strength and translucency was measured using universal testing machine and uv-vis spectrophotometer. X-ray diffraction (XRD) analysis was used for measurement of the phase identification. One-way ANOVA, Tukey HSD test were performed (α = 0.05). Results: There was no significant difference in flexural strength between the three layers (P > 0.05), while there was significant difference in translucency between different layers (P < 0.05). The flexural strength of incisal and transition layer was decreased by the single additional firing, and the three additional firings significantly decreased the flexural strength of three layers. The translucency of layer was decreased by additional firings except the body layer. The XRD patterns of all groups were similar. Conclusion: Three layers of 5Y-ZP were different only in translucency. Additional firings affected the flexural strength and translucency differently depending on the layers but crystalline phases were not changed.

A Pilot Test for the Utilization of Road Subsoil of the Tertiary Mudstone in Pohang Basin (포항분지 제3기 이암의 도로 노체 활용을 위한 현장시험)

  • Gong, Jeong-Sik;Baek, In-Woo;Kim, Jae-Gon;Song, Young-Suk;Kim, Tae-Hyung
    • Journal of the Korean Geosynthetics Society
    • /
    • v.20 no.3
    • /
    • pp.1-10
    • /
    • 2021
  • The purpose of this study is to present the possibility a utilization of the tertiary mudstone in Pohang as road subsoil material through pilot experiments on the road embankment structure. This mudstone is an unconsolidated rock that is distributed in the soft rock sedimentary layer, the tertiary layer of the Cenozoic, and causes physical problems such as slaking, swelling, and reduced shear strength and chemical problem like acid drainage. In order to solve various complex problems, an laboratory mixing test was conducted, and the optimal mixing conditions of the tertiary mudstone (90%), composite slag (steel making 70%, blast furnace 30%), and neutralization and coating agent treatment were derived. In order to prove its utilization, a real-scale road embankment structure was constructed and tests were conducted for each section. The pre-processing section is stable due to the design of optimal mixing conditions, while in post-processing section, natural weathering proceeded rapidly, and structural problems were concerned. Since the effect of neutralizing and coating agents was confirmed in temporary-staking section, the neutralizing and coating agents can be applied during the temporary storage period.

Experimental Study on the Applicability of Reactivity SiO2 Nano-Materials as Cement Composites (실리케이트계 반응성 나노소재의 시멘트 혼화재로써 적용 가능성에 대한 실험적 연구)

  • Kim, Won-Woo;Moon, Jae-Heum;Baek, Chul-Woo;Yang, Keun-Hyeok
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.9 no.4
    • /
    • pp.529-536
    • /
    • 2021
  • In this study, nano-silica and nano-titanium were selected to determine the possibility of applying the binder to reactive nano materials. The basic characteristics of the nano material candidate group were reviewed. and the reactivity of nano materials was reviewed through K-value. The reactivity of the nano silicate materials was measured to be high. Therefore, as a final candidate group, nano silicate materials were selected. The finally selected reactive nano material was reviewed for its usability as a construction binder. The mechanical properties and unit weight of cement paste were reviewed using silica fume and blast furnace slag and nano materials. When cement composites with nano silicate materials, it was confirmed that it was effective in improving the mechanical performance and decrease the unit weight of cement composites.

Study on the Co-firing of Sewage Sludge to a 80 kWth-scale Pulverized Coal Combustion System (80 kWth급 미분탄 연소 시스템에서 하수슬러지 혼소시 연소 특성 연구)

  • Chae, Taeyoung;Lee, Jaewook;Lee, Youngjae;Yang, Won
    • Clean Technology
    • /
    • v.25 no.1
    • /
    • pp.74-80
    • /
    • 2019
  • Thermochemical treatment of sewage sludge is an energy-intensive process due to its high moisture content. To save the energy consumed during the process, the hydrothermal carbonization process for sewage sludge can be used to convert sewage sludge into clean solid fuel without pre-drying. This study is aimed to investigate co-firing characteristics of the hydrothermally carbonated sewage sludge (HCS) to a pulverized coal combustion system. The purpose of the measurement is to measure the pollutants produced during co-firing and combustion efficiency. The combustion system used in this study is a furnace with a down-firing swirl burner of a $80kW_{th}$ thermal input. Two sub-bituminous coals were used as a main fuel, and co-firing ratio of the sewage sludge was varied from 0% to 10% in a thermal basis. Experimental results show that $NO_x$ is 400 ~ 600 ppm, $SO_x$ is 600 ~ 700 ppm, and CO is less than 100 ppm. Experimental results show that stable combustion was achieved for high co-firing ratio of the HCS. Emission of $NO_x$ and $SO_x$ was decreased for higher co-firing ratio in spite of the higher nitrogen contents in the HCS. In addition, it was found that the pollutant emission is affected significantly by composition of the main fuel, regardless of the co-firing ratios.

The Development of N2O Emission Factor at Municipal Solid Waste Incinerator (도시고형폐기물 소각시설의 N2O 배출계수 개발)

  • Ko, Jae Churl;Choi, Sang Hyun
    • Clean Technology
    • /
    • v.25 no.1
    • /
    • pp.40-45
    • /
    • 2019
  • In this study, nitrous oxide ($N_2O$) emission concentration was measured 3 times continuously for 24 hours from August 27, 2018 to October 22, 2018 and non-dispersive infrared (NDIR) spectrometer was used to calculate $N_2O$ concentration of exhaust gas from municipal solid waste (MSW) incinerator. As a result of $N_2O$ emission characteristics, it is estimated that $N_2O$ emission concentration is due to the difference of furnace temperature, oxygen concentration rather than the chemical component of waste. The measured $N_2O$ emission concentration of MSW incinerator was obtained in the range of 53.6 ~ 59.5 ppm and the total average concentration was measured 55.6 ppm. Therefore, the amount of $N_2O$ emissions calculated from the $N_2O$ concentration was $98.05kg\;day^{-1}$ on average and the amount of $N_2O$ distribution in the range of $90.41{\sim}108.44kg\;day^{-1}$ was obtained. As a result, the $N_2O$ emission factor of the MSW incinerator was estimated to be $1,066.13g_{N_2O}\;ton_{waste^{-1}}$. The estimated $N_2O$ emission factor of the MSW incinerator was 20 times higher than calculated emission factor used in the Tier 2 method. Consequently, it is considered that the method of calculating the amount of $N_2O$ emission in the MSW incineration facilities using waste type and incineration amount needs to be supplemented to ensure accuracy.

A Study on the Estimation of Optimal Unit Content of Binder for the Soil Stabilizer Using the Recycled Resource in DMM (심층혼합공법에서 순환자원을 활용한 지반안정재의 최적 단위결합재량 산정에 관한 연구)

  • Seo, Se-Gwan;Lee, Khang-Soo;Kim, You-Seong;Cho, Dae-sung
    • Journal of the Korean Geosynthetics Society
    • /
    • v.18 no.2
    • /
    • pp.37-44
    • /
    • 2019
  • The compressive strength of the soil stabilizer in the deep mixing method (DMM) depends on kinds of soil, particle size distribution, and water content. Because of this, Laboratory test has to perform to estimate the unit weight of binder to confirm the satisfaction of the design strength. In this study, uniaxial compression strength was measured by mixing the soil stabilizers developed in the previous study with clay in Busan, Yeosu, and Incheon area. And the strength enhancement effect was evaluated comparing with blast furnace slag cement (BFSC). Also, the relationship between the unit content of binder and uniaxial compressive strength was investigated in order to easily calculate the unit weight of binder required to ensure the stability of the ground at the field. As the results of the analysis, the relationship between the unit content of binder and the uniaxial compressive strength are ${\gamma}_B=(108.93+0.0284q_u){\pm}35$ when W/B is 70%, and ${\gamma}_B=(122.93+0.0270q_u){\pm}40$ when W/B is 80%.

Experiment on the Ancient Smelting-Smithing Technologies - A Study on the Proper Experimental Temperature - (고대 제련-단야기술 복원을 위한 실험적 연구 - 적정 조업온도 연구를 중심으로 -)

  • Lee, Eunwoo;Kwak, Byeongmoon;Kim, Eunji;Park, Jongryuk
    • Journal of Conservation Science
    • /
    • v.34 no.6
    • /
    • pp.581-593
    • /
    • 2018
  • Studies on ancient iron production technologies still have challenges to overcome, although there have been many results that have enabled us to understand these old technologies. The purpose of this study is to propose a suitable temperature condition for smelting experiments. The target for reconstruction is a smelting-smithing process in the ancient Jungwon area, and the experiment was designed on the basis of published research, such as archaeological evidence. Experiment A was performed at a low temperature to produce low-carbon iron, while Experiment B was conducted at a relatively high temperature to synthesize high-carbon iron. In addition, the low-carbon iron proved to be suitable for the smithing process. Moreover, aspects such as the microstructure and chemical composition of the slag and the surface condition of the furnace wall showed that the low-temperature smelting process was closer to the ancient method. It is important to mention the premise that the reconstruction of ancient technology can be achieved when the results of an experiment replicate the conditions of a real site. The results show that direct smelting, which produces low-carbon iron bloom under a low-temperature condition, should be the subject of smelting experiments concerning the iron production technologies of the ancient Jungwon area.