• Title/Summary/Keyword: funnel viscosity

Search Result 16, Processing Time 0.025 seconds

A study on the mix desing for stabilizing liquid of sluryy wall (Slury Wall용 안정액의 배합설계에 관한 연구)

  • ;;;Motoshige Ariyama
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.04a
    • /
    • pp.457-462
    • /
    • 1999
  • The purpose of this study is to design the requirements for the materials of stabilizing slurry and to determine the optimum slruuy mix design used in the underground wall of Inchon LNG #213 and 214 tank. After the materials and mix conditions of stabilizing slurry investigated and tested, we propose materials and optimum mix design according to testing items including funnel viscosity, we propose materials and optimum mix design according to testing items including funnel viscosity, fluid loss, cake thickness and specific gravity. As this results, we select optimum mix design that the upper limit ratio of bentonite is 2.0%, polymer is 0.1% considering the funnel viscosity and dispersion agent is 0.05% considering the fluid loss. Also we select all materials which are composed of GTC4 as bentonite, KSTP as polymer and Bentocryl as dispersion agent. All test results are satisfied our specifications for stabilizing slurry.

  • PDF

A study on properties of ultra high strength concrete of above 100MPa - fluidity and rheology properties (100MPa급 이상의 초고강도 콘크리트의 특성에 관한 연구 - 유동성 및 rheology 특성)

  • Seo, Il;Lee, Jin-Woo;Park, Hee-Gon;Bae, Yeon-Ki;Cho, Sung-Hyun;Lee, Han-Seung
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.317-320
    • /
    • 2008
  • In recent year, the ultra high strength concrete has highly increased and been used in many parts of the world. However, the viscosity of the ultra high strength concrete is high because of a low water to binder ratio (w/b). So that in this pater, the shear stress and the shear strain rate are directly measured by the viscometer in order to estimate the rheological properties of the ultra high strength concrete and a linear regression analysis was carried out to determine the plastic viscosity and the yield stress as slope. According to the test results, the yield stress and plastic viscosity are correlated to slump-flow, V-funnel flow time, O-lot flow time

  • PDF

Study on the Surface Electric Resistance for Inner COnductive Film in CRT Funnel (브라운관 Funnel Glass 내면의 흑연피막의 표면전기저항에 관한 연구)

  • 김상문;김태옥;신학기
    • Journal of the Korean Ceramic Society
    • /
    • v.35 no.11
    • /
    • pp.1155-1161
    • /
    • 1998
  • We have studyed the surface electric resistiance for inner conductive film consisted of graphite and iron oxide by coating the conductive paint on inner face of 28" wide CRT funnel and have evaluated the working properties of 28" wide CRT according to the surface electric resistiance. We found that the viscosity of paint and the thickness of conductive film became the higher but the surface electric resistiance of con-ductive films was the lower than before in accordance with the increase of solid contents in conductive paint and that the surface condition and the surface electric resistiance of conductive films changed highly ac-cording to the drying conditions also. From these results we could get the uniform thickness and the un-iform film resistance and the optimum working property of selectric propertise in CRT when we used the conductive paint with solid contents 28% and viscosity about 13cps.

  • PDF

A Study on the Optimum Mix Proportion of the Stabilizing Liquid Used for Excavation of the Deep and Massive Slurry Wall

  • Kwon Yeong-Ho
    • KCI Concrete Journal
    • /
    • v.14 no.4
    • /
    • pp.151-159
    • /
    • 2002
  • This study investigates experimentally the optimum mix proportion and design factors of the stabilizing liquid used for excavation of the massive and deep slurry wall in LNG in-ground tank before pouring concrete. Considering those site conditions, the stabilizing liquid used for excavation of slurry wall has to be satisfied with some requirements including specific gravity, fluid loss, cake thickness, funnel viscosity and sand content in order to construct the safe and qualified slurry wall. For this purpose, we select materials including bentonite, polymer and dispersion agent. After performing many tests for materials and mix design process, we propose the optimum mix proportion that the upper limit ratio of bentonite is $2.0\%$, polymer is $0.1\%$ considering the funnel viscosity and dispersion agent is $0.05\%$considering the fluid loss of the stabilizing liquid. Also, we select all materials which are consisted of GTC4 as bentonite, KSTP as polymer and Bentocryl 86 as dispersion agent. Based on the results of this study, the optimum mix proportion of the stabilizing liquid is applicable to excavate the deep and massive slurry wall in LNG in-ground tank successfully.

  • PDF

Effect of Dune Sand on the Properties of Flowing Sand-Concrete (FSC)

  • Bouziani, Tayeb;Bederina, Madani;Hadjoudja, Mourad
    • International Journal of Concrete Structures and Materials
    • /
    • v.6 no.1
    • /
    • pp.59-64
    • /
    • 2012
  • Sand-concrete is being researched for potential usage in construction in Saharan regions of Algeria, because of shortage in coarse aggregate resources. This research work deals with the effect of dune sand, available in huge quantities in these regions, on the properties of flowing sand-concrete (FSC) prepared with different proportions of dune and river sands. Mini-cone slump test, v-funnel flow-time test and viscosity measurements were used to characterize the behaviour of FSC in fresh state. The 28-day compressive strength was also determined. Test results show that an optimal content of dune sand, which makes satisfied fresh and hardened properties of FSC, is obtained. Moreover, the obtained flow index (constant b) calculated by the help of power-law viscosity model is successfully correlated to the experimental results of v-funnel flow time.

Analysis of Rheological Properties of Cement Paste with Binder Type and Composition Ratio (결합재 타입 및 구성비 변화에 따른 시멘트 페이스트의 레올로지 특성 분석)

  • Jeon, Sung IL;Nam, Jeong Hee;Lee, Moon Sup;Nho, Jae Myun
    • International Journal of Highway Engineering
    • /
    • v.19 no.5
    • /
    • pp.77-88
    • /
    • 2017
  • PURPOSES : It is necessary to clarify the rheological properties of cement paste as a basic research in the development of mechanistic concrete mix design. The rheological properties of cement paste with different binder types, mix propositions, and with/without high range water reducers have been analyzed. METHODS : In this study, ordinary Portland cement, fly-ash, blast furnace slag, silica fume, and limestone powder were used as binders. The range of water-binder ratio was 0.3-0.5, and a total of 30 different mixes have been tested. The slump flow test, V-funnel test, and Dynamic Shear Rheometer (DSR) test were performed to analyze the rheological properties of cement paste. RESULTS : As a result of the slump flow test, it was found that the composition ratio of the binder contents greatly affected the paste flow when the high range water reducers were added. The results of V-funnel test showed that when the water-binder ratio was decreased without high range water reducers, the binder composition ratio had a large effect on the passing time of the V-funnel tester, but with high range water reducers the impact of the binder composition ratio was decreased. The slump flow and V-funnel have a certain relationship with the rheological factors (yield stress and plastic viscosity), but the correlation was not significant. Finally, we proposed the M-value considering the density and specific surface area of the binder. The correlation between rheological factors and M-value were better demonstrated than experimental values, but there is still a limit to predict the rheological factor in general mix design. CONCLUSIONS :In this study, the rheological properties of cement paste were analyzed. The binder type, composition ratio of binder, and with/without high range water reducers have combined to provide the complex effects on the rheological properties of cement paste. The correlation between the proposed M-value and rheological factor was found to be better than experimental results, but needs to be improved in the future.

Influence of plastic viscosity of mix on Self-Compacting Concrete with river and crushed sand

  • Rama, J.S. Kalyana;Sivakumar, M.V.N.;Kubair, K. Sai;Vasan, A.
    • Computers and Concrete
    • /
    • v.23 no.1
    • /
    • pp.37-47
    • /
    • 2019
  • In view of the increasing utility of concrete as a construction material, the major challenge is to improve the quality of construction. Nowadays the common problem faced by many of the concrete plants is the shortage of river sand as fine aggregate material. This led to the utilization of locally available materials from quarries as fine aggregate. With the percentage of fines present in Crushed Rock Fines (CRF)or crushed sand is more compared to river sand, it shows a better performance in terms of fresh properties. The present study deals with the formulation of SCC mix design based on the chosen plastic viscosity of the mix and the measured plastic viscosity of cement pastes incorporating supplementary cementitious materials with CRF and river sand as a fine aggregate. Four different combinations including two binary and one ternary mix are adopted for the current study. Influence of plastic viscosity of the mix on the fresh and hardened properties are investigated for SCC mixes with varying water to cement ratios. It is observed that for an increasing plastic viscosity of the mix, slump flow, T500 and J-ring spread increased but V-funnel and L-box decreased. Compressive, split tensile and flexural strengths decreased with the increase in plastic viscosity.

Flowability Properties of Combined High Flowing Self-Compacting Concrete to the Addition of Viscosity Agent (증점제 첨가량 변화에 따른 병용계 고유동 자기충전 콘크리트의 유동특성)

  • Choi, Yun-Wang;Jeong, Jae-Gwon;Eom, Joo-Han;Choi, Wook;Kim, Kyung-Hwan;Moon, Dae-Joong
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.369-372
    • /
    • 2008
  • In this research experimentally analyzes the flow characteristics of a combined High flowing Self-Compacting Concrete of which the viscosity agent and defoaming agent addition amount are changed, to make the combined High flowing Self-Compacting Concrete that can secure the required flow performance and air amount. As a result of the experiment, the slump flow of the combined High flowing Self-Compacting Concrete added with viscosity agent increases when the viscosity agent addition amount is 0.2%(${\times}$W %). When viscosity agent addition amount increases, viscosity agent shows that it largely deviates from the regulation value in the flow time of V-funnel, which is presented in the JSCE standards (grade 2). Also, all mixtures, except for mixtures added with viscosity agent, defoaming agent, and AE agent, do not meet a target air amount $4.5{\pm}1.5%$. High flowing Self-Compacting Concrete mixtureadded with defoaming agent shows that although time passes after its first mixture, its air amount reduces a little. Based on the experiment, we can know an optimal polymer amount to obtain the required flow performance

  • PDF

Development of Fly Ash Super-Flowing Concrete (플라이애쉬를 사용한 2성분계 초유동 콘크리트의 개발)

  • 박연동;조일호;권영호;박칠림
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1994.10a
    • /
    • pp.121-126
    • /
    • 1994
  • In this study, several rheological properties of binder pastes and concrete are investigated for the development of commercially available fly ash super-flowing concrete. Fly ash contents with 5 leves(0, 10, 20, 30, 40%), slag contents with 6 levels(0, 5, 15, 25, 35, 45%), and water-binder ratios with 4 levels(30, 33, 36, 39%) are selected for test variables to evaluate the super-flowing characteristics of binder pastes. For the estimation of the workability of super-flowing concrete, slump flow, funnel time, box height, and L-flow are measured and compared. As the results, the flow is decreased and the viscosity is increased with increasing fly ash content. Super-flowing concrete is succesfully produced with 30% fly ash replacement.

  • PDF

Rheological Properties of Binder Pastes for Self-Compacting Concrete

  • Park, Yon-Dong
    • KCI Concrete Journal
    • /
    • v.13 no.1
    • /
    • pp.35-41
    • /
    • 2001
  • This paper investigated rheological properties of binder pastes for self-compacting high performance concrete. Six mixtures of self-compacting concrete were initially prepared and tested to estimate self-compacting property. Then, the binder pastes used in self-compacting concrete were tested for rheological properties using a rotary type rheometer. Binder pastes with different water-binder ratios arid flow values were also examined to evaluate their rheological characteristics. The binders were composed of ordinary Portland cement, fly ash, two types of pulverized blast-furnace slag, and limestone powder. The flow curves of binder pastes were obtained by a rotary type rheometer with shear rate control. Slump flow, O-funnel time, box, and L-flow teats were carried out to estimate self-compacting property of concrete. The flow curves of binder pastes for self-compacting concrete had negligible yield stresses and showed an approximately linear behavior at higher shear rates beyond a certain limit. Test results also indicated that the binders incorporating fly ash are more appropriate than the other types of binders in quality control of self-compacting concrete.

  • PDF