• Title/Summary/Keyword: fungicide tolerance

Search Result 14, Processing Time 0.018 seconds

Effects of Hexaconazole on Growth and Antioxidant Potential of Cucumber Seedlings under UV-B Radiation

  • Kim, Tae-Yun;Hong, Jung-Hee
    • Journal of Environmental Science International
    • /
    • v.21 no.12
    • /
    • pp.1435-1447
    • /
    • 2012
  • The present study was conducted to determine the effect of hexaconazole (HEX), a triazole fungicide, on the growth, yield, photosynthetic response and antioxidant potential in cucumber (Cucumis sativus L.) plants subjected to UV-B stress. UV-B radiation and HEX were applied separately or in combination to cucumber seedlings. The growth parameters were significantly reduced under UV-B treatment, however, this growth inhibition was less in HEX treated plants. HEX caused noticeable changes in plant morphology such as reduced shoot length and leaf area, and increased leaf thickness. HEX was quite persistent in inhibiting shoot growth by causing a reduction in shoot fresh and dry weight. HEX noticeably recovered the UV-B induced inhibition of biomass production. Significant accumutation in anthocyanin and flavonoid pigments in the leaves occurred as a result of HEX or UV-B treatments. HEX permitted the survival of more green leaf tissue preventing chlorophyll content reduction and higher quantum yield for photosystemII under UV-B exposure. HEX treatment induced a transient rise in ABA levels in the leaves, and combined application of HEX and UV-B showed a significant enhancement of ABA content which activates $H_2O_2$ generation. UV-B exposure induced accumulation of $H_2O_2$ in the leaves, while HEX prevented UV-B induced increase in $H_2O_2$, indicating that HEX serves as an antioxidant agent able to scavenge $H_2O$ to protect cells from oxidative damage. An increase in the ascorbic acid was observed in the HEX treated cucumber leaves affecting many enzyme activities by removing $H_2O_2$ during photosynthetic processes. The activities of antioxidant enzymes including catalase(CAT), ascorbate peroxidase(APX), superoxide dismutase(SOD) and peroxidase(POD) in the leaves in the presence of HEX under UV-B stress were higher than those under UV-B stress alone. These findings suggest that HEX may participate in the enhanced tolerance to oxidative stress. From these results it can be concluded that HEX moderately ameliolate the effect of UV-B stress in cucumber by improving the components of antioxidant defense system.

Development and Validation of Analytical Method for Determination of Fungicide Spiroxamine Residue in Agricultural Commodities Using LC-MS/MS (LC-MS/MS를 이용한 농산물 중 살균제 Spiroxamine의 시험법 개발 및 검증)

  • Park, Shin-Min;Do, Jung-Ah;Lim, Seung-Hee;Yoon, Ji-Hye;Pak, Won-Min;Shin, Hye-Sun;Kuk, Ju-Hee;Chung, Hyung-Wook
    • Journal of Food Hygiene and Safety
    • /
    • v.33 no.4
    • /
    • pp.296-305
    • /
    • 2018
  • Spiroxamine, one of fungicides, is used to control powdery mildew in various crops and black yellow sigatoka in bananas. The major strength of spiroxamine is to control powdery mildew in various crops and bananas yellow sigatoka in bananas. The compound has shown a high level of activity, good persistence and crop tolerance. Besides powdery mildew, good control of rust, net blotch and Rhynchosporium diseases been indicated in cereals, together with a complementary activity against Septoria diseases. In 2017, the maximum residue limit (MRL) of spiroxamine established in Korea. According to Ministry of ood and rug afety) regulations, spiroxamine residues defined only parent compound. Thus, a analytical method is needed to estimate the residue level of the parent compound. The objective of this study was to develop and validate analytical method for spiroxamine in representative agricultural commodities. Samples were extracted with acetonitrile and partitioned with dichloromethane to remove the interfering substances. The analyte were quantified and confirmed liquid chromatograph-tandem mass spectrometer (LC-MS/MS) in positive-ion mode using multiple reaction monitoring (MRM). Matrix matched calibration curves were linear over the calibration ranges ($0.0005{\sim}0.1{\mu}g/mL$) for the analyte in blank extract with coefficient of determination ($r^2$) > 0.99. For validation purposes, recovery studies will be carried out at three different concentration levels (LOQ, 10LOQ, and 50LOQ) performing five replicates at each level. The recoveries 70.6~104.6% with relative standard deviations (RSDs) less than 10%. All values were consistent with the criteria ranges in the Codex guidelines (CAC/GL40, 2003) and MFDS guidelines. proposed analytical method be used as an official analytical method in the Republic of Korea.

Characterization of Mutations in AlHK1 Gene from Alternaria longipes: Implication of Limited Function of Two-Component Histidine Kinase on Conferring Dicarboximide Resistance

  • Luo, Yiyong;Yang, Jinkui;Zhu, Mingliang;Yan, Jinping;Mo, Minghe;Zhang, Keqin
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.1
    • /
    • pp.15-22
    • /
    • 2008
  • Four series (S, M, R, and W) of Alternaria longipes isolates were obtained based on consecutive selection with Dimethachlon (Dim) and ultraviolet irradiation. These isolates were then characterized according to their tolerance to Dim, sensitivity to osmotic stress, and phenotypic properties. All the selected Dim-resistant isolates showed a higher osmosensitivity than the parental strains, and the last generation was more resistant than the first generation in the M, R, and W series. In addition, the changes in the Dim resistance and osmotic sensitivity were not found to be directly correlated, and no distinct morphologic characteristics were found among the resistant and sensitive isolates, with the exception of the resistant isolate K-11. Thus, to investigate the molecular basis of the fungicide resistance, a group III two-component histidine kinase (HK) gene, AlHK1, was cloned from nineteen A. longipes isolates. AlHK1p was found to be comprised of a six 92-amino-acid repeat domain (AARD), HK domain, and response regulator domain, similar to the Os-1p from Neurospora crassa. A comparison of the nucleotide sequences of the AlHK1 gene from the Dim-sensitive and -resistant isolates revealed that all the resistant isolates contained a single-point mutation in the AARD of AlHK1p, with the exception of isolate K-11, where the AlHK1p contained a deletion of 107 amino acids. Moreover, the AlHK1p mutations in the isolates of each respective series involved the same amino acid substitution at the same site, although the resistance levels differed significantly in each series. Therefore, these findings suggested that a mutation in the AARD of AlHK1p was not the sole factor responsible for A. longipes resistance to dicarboximide fungicides.

Atomic Absorption Spectrophotometric Analysis of Copper In the Soil s of Orchards (원자흡광법(原字吸光法)에 의(依)한 과수원(果樹園) 토양중(土壤中)의 동함량(銅含量) 분석(分析)에 관(關)한 연구(硏究))

  • Park, Seung Heui
    • Korean Journal of Agricultural Science
    • /
    • v.7 no.1
    • /
    • pp.52-58
    • /
    • 1980
  • This study was conducted to detect copper which is considered in the soils of orchards, since copper fungicide has been applied to fruit trees. Soil samples taken from the fields of the chief producing districts of apple (Chungju, Yesan, Daegu), pear (Yangju, Bucheon, Seonghwan) and citrus (Seogypo in Jeju island) were analysed by an atomic absorption spectrophotometer. The results obtained were summarized as follows ; 1. In orchards of apple, the amount of copper of soils from Yesan, Chungju and Daegu were ranged 2.6-171.3ppm, 2.2-136.1ppm and 14.3-134.6ppm, respectively. Very little copper was detected from the soils in the field which has been cultivated for less than 20 years. About 100ppm and 130-170ppm of copper were detected in the field which has been cultivated for 30 years and for 50-60 years, respectively. Most of the copper was detected in the surface layer of soils (0-10cm), while very low content of copper was detected in the deeper layer of soils (10-20cm). 2. In orchards of pear, 20-30ppm of copper was detected from the surface of soils in the field which has been cultivated for more than 30 years and the highest level of copper, 36.8ppm, was detected from Yangju area. The amount of copper of soils from Yangju, Seonghwan and Bucheon were ranged 3.6-36.8ppm, 9.7-19.4ppm and 3.6-24.7ppm, respectively. 3. In orchards of citrus of Jeju island, only trace amount and 23-38ppm of copper were detected in the fields cultivated for 15 years and 20-30 years, respectively. The highest level of copper, 57ppm, was detected from the surface layer of soils in the field which has been cultivated for 35 years, but in most of the soil samples tested, only the natural background level of copper, about 20ppm, was detected. 4. The levels of copper residue in all the soil samples tested were lower than the tolerance level (125ppm of copper which is extracted in 0.1N-HCl solution), except those of copperr residue, 130-170ppm, that were detected from the orchards of apple which have been under cultivation for 50-60 years. Hence no problem for the farming could be speculated with the present concentration of copper analysed.

  • PDF