• Title/Summary/Keyword: fungi sp

Search Result 576, Processing Time 0.043 seconds

The effect of antagonists produced by Paenibacillus polymyxa CK-1 on the growth of Trichoderma sp. (Paenibacillus polymyxa CK-1이 생산한 길항물질이 Trichoderma sp. 생육에 미치는 영향)

  • Lee, Sang-Won;Choi, Jin-Sang;Kim, Chul-Ho
    • Journal of Mushroom
    • /
    • v.12 no.3
    • /
    • pp.201-208
    • /
    • 2014
  • The separation of the bacteria inhibiting Trichoderma sp. mold, the strain causing blue mold disease that occurs frequently when cultivating mushroom while carrying out the efficient fermentation of mushroom medium, from the growth was done. In about 200 strains isolated primarily from fungus garden samples, 6 strains were secondly isolated, which had fast growth rates and a clear zone on the plate medium of SM, AM, and CM. Among the 6 strains isolated, the C-1 strain showed high enzymatic activity of cellulase, amylase, and protease, and strong antibacterial activity for the T. virens and T. harzianum, selected finally. The selected C-1 strain was identified as Paenibacillus polymyxaby the result of the identification by Bergey's Manual of Systematic Bacteriology and the analysis of the nucleotide sequence of 16S rRNA, and named as P. polymyxa CK-1. In reviewing the growth conditions of the P. polymyxa CK-1 strain, the optimum cultivation temperature was $45^{\circ}C$, and the optimum pH for growth was in the range of 6.0~7.0. Appropriate incubation time of P. polymyxa CK-1 for the growth inhibition of the fungus T. virens and T. harzianum was 22 to 36 hours. And the fungal growth was not observed, even when leaving two molds inoculated on each petri dishes, which were treated with 24 hour culture solution of P. polymyxa CK-1 strain for 10 days. As a result of studying the thermal stability of the antagonists produced by the P. polymyxa CK-1 strain, no mycelial growth of the two fungi was observed in the test group treated for 20 minutes at $60^{\circ}C$ and $100^{\circ}C$, but mycelial growth was slightly observed in the test group treated for 20 minutes at $121^{\circ}C$. As aresult of reviewing the impact of the P. polymyxa CK-1 culture medium on mushroom mycelial growth, it showed no effect on a variety of mushroom mycelial growth including enoki mushroom and shiitake mushroom.

Degradation Ability and Population of Resistant Strains of Chlorothalonil in Upland Soil Distributed in Honam Area (호남지역 밭토양에 분포된 Chlorothalonil 내성균(耐性菌)의 밀도(密度)와 분해능(分解能))

  • Lee, Sang-Bok;Choi, Yoon-Hee;Yoo, Chul-Hyun;So, Jae-Don;Rhee, Gyeong-Soo
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.29 no.1
    • /
    • pp.74-80
    • /
    • 1996
  • This experiment was conducted to obtain the basis of degradation of remaining agricultural chemicals accumulated in upland soils of Honam district in Korea. The population. relative growth rate(RGR). chlorothalonil(TPN)-degradation ability and bacterialogical characteristics of TPN resistant strains were investigated in TPN levels of 0, 25, 50, 100 and $500{\mu}l/ml$ compared with Mancozeb. A number of TPN-resistant bacteria were differ in the area of examined and were decreased with higher levels of TPN. The resistance of bacteria was stronger in TPN than Mancozeb but the resistance of fungi was vise versa. RGR of bacteria in the culture was the highest at the level of $50{\mu}l/ml$ and the lowest in $500{\mu}l/ml$ of TPN. TPN-degradation ability of bacteda isolated in various TPN levels was varied : only 8 percentage of bacteria showed 75 percentage or more degradation ability. The higher the concentration in TPN resistance, the larger the number of strains carried great ability to decompose pesticide residues. The strains having higher decomposition ability was rod-shapes cells and senstive to heat. Analyses of the indol production, methyl red, and V-P test have given similar results, with negative reaction in all these strain, while the other biochemical characteristics were differ in the strains. Based on these, these strains might be classified into Pseudomonas sp., Corynebacterium sp., Acinetobacter sp. and Moraxcella sp.

  • PDF

Seasonal Changes in Colonization and Spore Density of Arbuscular-Mycorrhizae in Citrus Groves (감귤뿌리에서의 Arbuscular-Mycorrhizae 형성과 감귤원 토양중 포자밀도의 계절적 변화)

  • Kim, Sang-Youb;Oh, Hyun-Woo;Moon, Doo-Khil;Han, Hae-Ryong;Chung, Jong-Bae
    • Korean Journal of Environmental Agriculture
    • /
    • v.17 no.2
    • /
    • pp.174-181
    • /
    • 1998
  • In four citrus grow of Satsuma mandarin (rootstock of trifoliate orange) including two grove of organical management and two groves of conventional management, spores of arbuscular mycorrhizal(AM) fungi were identified and seasonal changes in spore density in soils and AM colonization of citrus roots were investigated. AM colonization in weeds found in the groves were also examined. Three species of Glomus (G.deserticola, G. vesiculiferum, G. rubiforme ) and one unknown species of Acaulospora were observed in all of the groves. Annual mean density of AM fungal spores were in the range of 10,000${\sim}$40,000 per 100g soil with more spores in the organically-managed groves. The least spores were observed in December in all groves, and the most spores in April in the organically-managed groves while in February or April in the conventionally- managed. Annual mean AM colonization more 27% of citrus root were observed in the organically-managed with the high peaks in April and October and the minimum in August, while mean colonization less than 15% in the conventionally-managed with the peak in February and the minimum in different times depending on groves and years. AM colonization corresponded to a sigmoidal curve consisting of a laf phase during winter and a subsequent increase in spring, then succeeded by a maximum, and then a decrease at the end of vegetation. Fungal spore density and AM colonization showed a parallel pattern during the sample period. The seasonality appeared to be related more to the phenology of the plant than to the soil factors. Generally more spore density and AM colonization were found in organically managed groves. AM colonization was not correlated with available P and organic matter content in soil in this field investigation. Among sixteen weed species found in the groves, Astrogalus sinicus of Leguminosae, Portulaca oleracea of Portulacaceae showed high colonization in all groves and they can be considered as a source of inoculumn and host plants for propagation of AM fungi.

  • PDF

Physiology characteristics of genus Hypocrea isolated at oyster mushrooms of the shelf cultivation (균상재배 느타리버섯에서 분리한 Hypocrea속 균의 생리적 특성)

  • Lee, Chan-Jung;Moon, Ji-Won;Cheong, Jong-Chun;Kong, Won-Sik;Jhune, Chang-Sung
    • Journal of Mushroom
    • /
    • v.13 no.1
    • /
    • pp.68-73
    • /
    • 2015
  • Hypocrea disease is the most severe disease of oyster mushroom cultivation in Korea. Physiological and ecological studies were performed on the pathogens (Hypocrea spp.) to obtain basic information for developing the integrated disease management system. Fourteen isolates of Hypocrea were collected from oyster mushroom house in five areas. Pathogenic fungi causing disease of oyster mushroom were identified as Hypocrea sp. based on morphological characteristics and pathogenicity. Two isolates (H-1, H-12) showed the fastest growth at $15^{\circ}C$ but four isolates (H-8, H-9, H-13, H-14) showed slower growth than those of other isolates at $20^{\circ}C$ and $25^{\circ}C$. Stroma with ascocarps and ascospore were produced on PDA under fluorescent light. The five isolates produced stroma with ascocarps and ascospores. Formation of fruiting body of strains H-14 of Hypocrea were the best out of all the strains on the potato dextrose agar (PDA). Also, fruiting bodies and ascospores were completely produced under fluorescent light. The growth of the isolates was correlated with total carbon content. The stroma of the isolates was formed mainly in histidine and asparagine treatment and especially in histidine-70 and asparagine-100 treatment. In the test of pathogenicity, after and before spawning showed very fast incidence of disease.

Occurrence of Sclerotinia Rot of Crisphead Lettuce Caused by Sclerotinia sclerotiorum and Its Pathogenicity (Sclerotinia sclerotiorum에 의한 결구상추 균핵병(Sclerotinia rot)의 발생과 병원성)

  • Baek, Jung-Woo;Kim, Han-Woo;Kim, Hyun-Ju;Park, Jong-Young;Lee, Kwang-Youll;Lee, Jin-Woo;Jung, Soon-Je;Moon, Byung-Ju
    • Research in Plant Disease
    • /
    • v.10 no.4
    • /
    • pp.324-330
    • /
    • 2004
  • This studies were investigated the occurrence of sclerotinia rot at the crisphead lettuce field in Uiryeong-Gun, Gyeongsangnam-Do from January to May in 2003. Average incidence rates of sclerotinia rot on crisphead lettuce was up to 21.9% at the five plastic houses. A total of 140 isolates of Sclerotinia sp. were obtained from diseased leaves of crisphead lettuce. Among them, the fungi YR-1 was isolated, which showed highly virulent on the whole plant. the YR-1 was identified as Sclerotinia sclerotiorum based on the formation, color, shape and size of sclerotium and apothecium. For the pathogenicity test, the most suitable inoculum quantity of YR-1 strain was selected as the triturated mycelial suspension of $A_{550}$=0.8, 40 ml showing disease incidence of 94%, and the symptom showed as same as at the fields, the leaves and stem had rotten and developed white downy mycelial at the diseased lesion on the leaves and stems, and produced black and irregular sclerotinia. This is the first report on the pathogenicity test using by triturated mycelial suspension-inoculum of the pathogen for the sclerotinia rot of crisphead lettuce.

Corn Cultivation to Reduce the Mycotoxin Contamination (곰팡이 독소 오염 경감을 위한 옥수수 재배법)

  • Kim, Yangseon;Kang, In Jeong;Shin, Dong Bum;Roh, Jae Hwan;Jung, Jingyo;Heu, Sunggi;Shim, Hyeong Kwon
    • Research in Plant Disease
    • /
    • v.23 no.3
    • /
    • pp.256-261
    • /
    • 2017
  • The effects of insecticide and fungicide treatment were investigated to reduce mycotoxin contamination of corn (Zea mays L.) seeds. Deoxynivalenol and zearalenone contents were reduced in the treated seeds, but aflatoxin, ochratoxin A, fumonisin, and T-2 toxin were not effective by chemical treatments. The chemical treatment did not affect the growth of saprophyte, but inhibited the pathogenic fungi such as Fusarium verticillioides, F. graminearum and F. equiseti. Myotoxin contents at different harvesting time were compared. As the harvest time was delayed, both levels of deoxynivalenol and zearalenone and frequency of Fusarium spp. increased. However, the major nutrient contents of corn seeds were not affected by harvesting period. These results show that chemical treatments are necessary to reduce the fungal contamination of corn and harvest without delay is important as well.

Purification and Characteriztion of an Antifungal Antibiotic from Bacillus megaterium KL 39, a Biocontrol Agent of Red-Papper Phytophtora Blight Disease. (고추역병균 Phytophthora capsici를 방제하는 길항균주 Bacillus megaterium KL39의 선발과 길항물질)

  • 정희경;김상달
    • Microbiology and Biotechnology Letters
    • /
    • v.31 no.3
    • /
    • pp.235-241
    • /
    • 2003
  • For the biological control of Phytophthora blight of red-pepper caused by Phytophthora capsici, an antibiotic-producing plant growth promoting rhizobacteria (PGPR) Bacillus sp. KL 39 was selected from a local soil of Kyongbuk, Korea. The strain KL 39 was identified as Bacillus megaterium by various cultural, biochemical test and API and Microlog system. B. megaterium KL 39 could produce the highest antifungal antibiotic after 40 h of incubation under the optimal medium which was 0.4% fructose, 0.3% yeast extract, and 5 mM KCl at 30 C with initial pH 8.0. The antifungal antibiotic KL 39 was purified by Diaion HP-20 column, silica gel column, Sephadex LH-20 column, and HPLC. Its RF value was confirmed 0.32 by thin-layer chromatography with Ethanol:Ammonia:Water = 8:1:1. The crude antibiotic KL39 was active against a broad range of plant pathogenic fungi, Rhizoctonia solani, Pyricularia oryzae, Monilinia fructicola, Botrytis cinenea, Alteranria kikuchiana, Fusarium oxysporum and Fusarium solani. The purified antifungal antibiotic KL39 had a powerful biocontrol activity against red-pepper phytophthora blight disease with in vivo pot test as well as the strain B. megaterium KL 39.

Isolation and Morphological Characterization of Ttichoderma harzianum SJG-99721, a Powerful Biocontrol Agent (길항작용을 나타내는 Trichoderma harzianum SJG-99721의 분리 및 형태학적 특징)

  • 이호용;민봉희
    • Korean Journal of Environmental Biology
    • /
    • v.20 no.2
    • /
    • pp.130-135
    • /
    • 2002
  • Species of Genus Trichoderma are commercially applied as biological control agents against fungal Pathogens. A powerful biocontrol agent, Trichoderma sp. SJG-99721 was isolated from 305 isolates by morphological characters, chitinase activities and antifungal activities against Phytophthora capsiei. The isolate was identified as Trichoderma harzianum from various features such as growth rate at $27^\circ{C}$, significant growth ratio of $27^\circ{C}$ to $17^\circ{C}$, amount of aerial mycelium, types of branching: system, and disposition patterns of phialide and phialospore. Trichoderma harzianum SJG-99721 have been shown to act as a powerful biological agent against fungal phytopathogens; Botrytis cinerea, Rhizoctonia solani, Phytophthora cryptogea, Phytophthora capsiei, Sclerotinia sclerotiorum, Mycoshaerella melonis, Alternaria sotani, Fusarium oxysporum, Collectotrichum gloesporioodes, Alternaria alternata, Phythium ultimum, Phytophthora drechsleri, Pyricularia grisea.

An Antifungal Subatance, 2,4-Diacetylphloroglucinol Produced from Antagonistic Bacterium Pseudo-monas fluorescens 2112 Against Phytophthora capsici (Phytophthora capsici를 길항하는 Pseudononas fluorescens 2112가 생산하는 항진균 항생물질 2,4-diacetylphloroglucinol)

  • 이은탁;김상달
    • Microbiology and Biotechnology Letters
    • /
    • v.29 no.1
    • /
    • pp.37-42
    • /
    • 2001
  • An antifungal substance was purified from culture broth of Pseudomonas flulorescens 2112 that showed a broad-spectrum antagonistic activity against various phytopathogenic fungi including capsici. The substance was identified as 2,4-diacetylphloro-glucinol basd on NMR analysis. The 2,4-diacetylphloroglcinol showed antibiotic activity in broad acidic range from pH 1.0 to pH 9.0. About 83% of initial activity was remained after incubation for 30min ar $60^{\circ}C$, however, the activity was dropped up to 50% after 30 min incubation in $80^{\circ}C$. When the nucleotides of P. capsici treated with 2,4-diacetylphloroglucinol were labeled with[$^{3}$ H]-Adenin, the newly synthesized and radioactive-labeled RNA was significantly reduced than those of untreated P. capsici. indicating that the 2,4-diacetylphloroglucinol inhibits RNA synthesis.

  • PDF

Isolation and Identification of Antagonistic Bacteria for Biological Control of Large Patch Disease of Zoysiagrass Caused by Rhizoctonia solani AG2-2 (IV) (들잔디 갈색퍼짐병의 생물학적 방제를 위한 길항 세균의 분리와 동정)

  • Song, Chi-Hyun;Islam, Md. Rezuanul;Chang, Tae-Hyun;Lee, Yong-Se
    • Asian Journal of Turfgrass Science
    • /
    • v.26 no.1
    • /
    • pp.8-16
    • /
    • 2012
  • The objective of this study was to identify bacterial antagonists of R. solani AG2-2 (IV) on zoysiagrass and to evaluate their antifungal activity in vitro and in vivo to select an antagonistic isolate. Antagonistic isolates that inhibit large patch disease caused by R. solani AG2-2 (IV) in zoysiagrass were selected from several soils, and their antagonistic activities were investigated in vitro and in vivo. Of 216 bacterial isolates, 67 inhibited several plant pathogenic fungi. The isolates that inhibited stem-segment colonization by R. solani AG2-2 (IV) in zoysiagrass were tested in a growth chamber. Eleven isolates were active as plant growth promoting isolates. Among them, five plant growth promoting isolates and their concentration dependent efficiency on zoysiagrass following inoculation with R. solani AG2-2 (IV) was evaluated. Isolate H33 was one of the potential antagonistic isolates, and it was further tested against various plant pathogens. H33 not only suppressed the disease caused by R. solani AG2-2 (IV) on zoysiagrass but also promoted leaf weight and leaf height of zoysiagrass under growth chamber and greenhouse conditions. The H33 isolate, which belongs to Streptomyces arenae, was identified through physiological, biochemical, and 16S rDNA studies. Further studies will investigate the cultural characterization of S. arenae H33 and isolation and identification of antifungal substance produced by S. arenae H33.