• Title/Summary/Keyword: fungi sp

Search Result 576, Processing Time 0.038 seconds

Efficacy of Grapefruit Seed Extract in the Preservation of Satsuma mandarin (Grapefruit 종자추출물을 이용한 밀감의 저장효과)

  • Cho, Sung-Hwan;Lee, Hyun-Chul;Seo, Il-Won;Kim, Ze-Uook;Chang, Young-Sang;Shin, Zae-Ik
    • Korean Journal of Food Science and Technology
    • /
    • v.23 no.5
    • /
    • pp.614-618
    • /
    • 1991
  • To investigate the efficacy of grapefruit seed extract (GFSE) in the preservation of Satsuma mandarin, the citrus fruits were treated with 0 (control, only wash), 100 ppm and 250 ppm, dried and stored for 8 weeks at $15{\sim}20^{\circ}C$ and 60% RH. While 80% of the control fruits were contaminated and decayed by Penicillium sp., forming the the greenish blue spores, 27% of 100 ppm GFSE-treated fruits were contaminated and decayed and only 13% of 250 ppm GFSE-treated fruits were contaminated and decayed and only 13% of 250 ppm GFSE-treated samples were contaminated and not decayed by the fungi. GFSE showed marded inhibitory action against Penicillium sp. which was related to the decay of the citrus fruits in vitro experiments. Fungal growth was completely controlled through use of 500 ppm and the recommended range of GFSE to preserve the citrus fruits was $250{\sim}500ppm$. Transmission electron microscopic examination showed the fungal conidiospores the function of which was destroyed by dipping into GFSE.

  • PDF

Selection and Identification of a Hyperparasite, Ampelomyces quisqualis 94013 for Biocontrol of Cucumber Powdery Mildew (오이 흰가루병 생물적 방제를 위한 중복기생균 Ampelomyces quisqualis 94013의 선발 및 동정)

  • Lee, Sang-Yeob;Hong, Sung-Kee;Kim, Yong-Ki;Kim, Hong-Gi
    • The Korean Journal of Mycology
    • /
    • v.35 no.2
    • /
    • pp.121-127
    • /
    • 2007
  • 308 isolates of Ampelomyces sp. were isolated from powdery mildew fungi of 73 plant species in Korea for selection of biocontrol agents. An isolate 94013 isolated from powdery mildew fungus of red bean was selected as an effective biological control agent against cucumber powdery mildew in greenhouse. The morphological characteristics of the isolate is as follows. Pycnidia were sub-globose or elongated to pyriform, pale to dart brown, $52.5{\sim}82.5\;{\times}\;35.0{\sim}47.5\;(ave.\;62.5{\times}40.5){\mu}m$, and conidia were guttulate, straight cylindrical to fusiform, pale brown, $5.0{\sim}8.0\;{\times}\;2.5{\sim}4.3\;(ave.\;6.0{\times}3.0){\mu}m$. The isolate 94013 was identified as Ampelomyces quisqualis by morphological characteristics and rDNA ITS sequencing. The isolate A. quisqualis 94013 was different from that of the commercial product $AQ10^R$ in the rDNA ITS sequence.

Response of Microbial Distribution to Soil Properties of Orchard Fields in Jeonbuk Area (전북지역 과수원의 토양특성이 미생물 분포에 미치는 영향)

  • Ahn, Byung-Koo;Kim, Hyo-Jin;Han, Seong-Soo;Lee, Young-Han;Lee, Jin-Ho
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.5
    • /
    • pp.696-701
    • /
    • 2011
  • This study was conducted to investigate impacts of soil properties on microbial distribution in Jeonbuk orchard fields. Soil samples were collected from 110 sites cultivated with different fruit plants. The population of aerobic bacteria and fungi and the content of soil microbial biomass carbon (C) were found to increase with increasing silt content in the soils. Different activity of dehydrogenase was not observed among the different textures of soil. Microbial distribution, amount of microbial biomass C, and dehydrogenase activity in the soils were not significantly different among the topographic sites. However, in pear and grape fruit plant fields, coliform group of bacteria was found in relatively higher population, $133.0{\times}10^3\;CFU\;g^{-1}$ and $107.4{\times}10^3\;CFU\;g^{-1}$, respectively. Microbial groups were simplified and their density was reduced with increasing the cultivation periods of fruit plants. The soil microbial distribution was proportionally correlated with some of soil properties such as soil pH, soil organic matter (SOM) content, and exchangeable Mg content; in particular, the population of Bacillus sp. was proportionally correlated with soil pH and exchangeable Mg content. The amounts of microbial biomass C and the dehydrogenase activity in the soils were significantly correlated with the contents of SOM and exchangeable Ca ion (p<0.01).

In Vivo Antifungal Activities of 57 Plant Extracts Against Six Plant Pathogenic Fungi

  • Choi, Gyung-Ja;Jang, Kyoung-Soo;Kim, Jin-Seok;Lee, Seon-Woo;Cho, Jun-Young;Cho, Kwang-Yun;Kim, Jin-Cheol
    • The Plant Pathology Journal
    • /
    • v.20 no.3
    • /
    • pp.184-191
    • /
    • 2004
  • Methanol extracts of fresh materials of 57 plants were screened for in vivo antifungal activity against Magna-porthe grisea, Corticium sasaki, Botrytis cinerea, Phyto-phthora infestans, Puccinia recondita, and Blumeria graminis f. sp. hordei. Among them, seven plant extracts showed disease-control efficacy of more than 90% against at least one of six plant diseases. None of the plant extracts was highly active against tomato gray mold. The methanol extracts of Chloranthus japonicus (roots) (CjR) and Paulownia coreana (stems) (PcS) displayed the highest antifungal activity; the CjR extract controlled the development of rice blast, rice sheath blight, and wheat leaf rust more than 90%, and tomato gray mold and tomato late blight more than 80%. The PcS extract displayed control values of more than 90 % against rice blast, wheat leaf rust, and barley powdery mildew and more than 80% against tomato gray mold. The extract of PcS also had a curative activity against rice sheath blight and that of CjR had a little curative activity against rice blast. On the other hand, the extract of Rumex acetocella roots reduced specifically the development of barley powdery mildew. Further studies on the characterization of antifungal substances in antifungal plant extracts are underway and their disease-control efficacy should be examined under greenhouse and field conditions.

Taxonomy of fungal complex causing red-skin root of Panax ginseng in China

  • Lu, Xiao H.;Zhang, Xi M.;Jiao, Xiao L.;Hao, Jianjun J.;Zhang, Xue S.;Luo, Yi;Gao, Wei W.
    • Journal of Ginseng Research
    • /
    • v.44 no.3
    • /
    • pp.506-518
    • /
    • 2020
  • Background: Red-skin root of Asian ginseng (Panax ginseng) significantly reduces the quality and limits the production of ginseng in China. The disease has long been thought to be a noninfectious physiological disease, except one report that proved it was an infectious disease. However, the causal agents have not been successfully determined. In the present study, we were to reveal the pathogens that cause red-skin disease. Methods: Ginseng roots with red-skin root symptoms were collected from commercial fields in Northeast China. Fungi were isolated from the lesion and identified based on morphological characters along with multilocus sequence analyses on internal transcription spacer, β-tubulin (tub2), histone H3 (his3), and translation elongation factor 1α (tef-1α). Pathogens were confirmed by inoculating the isolates in ginseng roots. Results: A total of 230 isolates were obtained from 209 disease samples. These isolates were classified into 12 species, including Dactylonectria sp., D. hordeicola, Fusarium acuminatum, F. avenaceum, F. solani, F. torulosum, Ilyonectria mors-panacis, I. robusta, Rhexocercosporidium panacis, and three novel species I. changbaiensis, I. communis, and I. qitaiheensis. Among them, I. communis, I. robusta, and F. solani had the highest isolation frequencies, being 36.1%, 20.9%, and 23.9%, respectively. All these species isolated were pathogenic to ginseng roots and caused red-skin root disease under appropriate condition. Conclusion: Fungal complex is the causal agent of red-skin root in P. ginseng.

Genetic Study of Soybean Sudden Death Syndrome Pathogen(Fusarium solani f. sp. glycines) isolated from Geographically Different Fields based on RFLPs of Mitochondrial DNA

  • Cho, Joon-Hyeong;J. C. Rupe
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.45 no.2
    • /
    • pp.143-149
    • /
    • 2000
  • From the soils of soybean fields in Cotton Branch Station (CBS) and Pine Tree Station (PTS), Arkansas, USA, various single spore isloates of sudden death syndrome (SDS) pathogen were obtained on modified Nash & Snyder's medium (MNSM) with dilution plating technique and transferred to potato dextrose agar (PDA) medium to identify the cultural colony shape. The colony shapes of these isolates resembled F. solani isolate 171 which was white and chalky shaped on MNSM and most of them had unique form of morphology which produced white margin and blue center colony on PDA. Although, some of these isolates had more dark blue or showed slightly different color, all isolates that were selected randomly for green-house inoculation assay produced typical foliar symptoms on leaves of soybean, Hartz 6686. To determine the genetic differences among the isolates, mitochondrial DNA restriction fragment length polymorphism (RFLP) was conducted with fourty isolates from both fields, using mtDNA probes, 2U18 and 4U40, derived from Colletotrichum orbiculare. We obtained distinctive RFLPs in each treatment of restriction enzyme, EcoRI and HaeⅢ. Isolates, 11-2-5 and 14-3-1-1, from CBS and isolates, 104-3-1-2 and 701-1-5-1, from PTS showed different band patterns from 171 in both or in either treatment of restriction enzymes. Even if some of these isolates showed heterogeneous, they were more closer to 171 than PN603. And, also, rest of the thirty-six isolates had exactly same polymorphisms as 171 in each treatment of restriction enzyme. Although, some of the isolates showed the different morphological shape on PDA and slightly different band patterns on RFLPs, all of the isolates selected on MNSM due to their distinctive colony shape from other fungi produced the typical foliar symptoms on soybean leaves in greenhouse inoculation assay. It might be suggested that these isolates were not genetically different from check isolate 171 and they were unique strain of F. solani.

  • PDF

Investigation on Artificial Culture for New Edible Wild Mushrooms (야생(野生) 식용(食用)버섯의 인공재배(人工栽培) 검토(檢討))

  • Park, Yeong-Hwan;Kim, Yang-Sup;Cha, Dong-Yule
    • The Korean Journal of Mycology
    • /
    • v.6 no.2
    • /
    • pp.25-30
    • /
    • 1978
  • Present experiments were conducted to determine the possibility of cultivation of 9 edible wild species selected among the higher fungi growing in Korea. In the investigation on the mycelial growth according t6o the different media, the mycelial growth of Coprinus comatus was fast on the CSA medium, when malt extract was added to the basal medium PSA, the mycelial of Lapista nuda and Auricularia auricula-judae was fast in growth and density. In the spawning, the mycelial growth of Pholiota squarrosa on the oak tree's sawdust, Pleurotus cornucopiae on the broad-leaves' sawdust, and Coprinus comatus on the compost was respectably fast and also it shown to be possibility of artificial cultivation owing to their carporphore budding when Coprinus comatus and Lepiota alborubescens cultivated on the rice straw, Auricularia auriculajudae and Pleurotus cornucopiae on the sawdust of the popla and Pholiota squarrosaon the sawdust of the oak tree.

  • PDF

Molecular and Morphological Identification of Fungal Species Isolated from Bealmijang Meju

  • Kim, Ji-Yeun;Yeo, Soo-Hwan;Baek, Sung-Yeol;Choi, Hye-Sun
    • Journal of Microbiology and Biotechnology
    • /
    • v.21 no.12
    • /
    • pp.1270-1279
    • /
    • 2011
  • Bealmijang is a short-term aged paste made from meju, which is a brick of fermented soybeans and other ingredients. Different types of bealmijang are available depending on the geographic region or ingredients used. However, no study has clarified the microbial diversity of these types. We identified 17 and 14 fungal species from black soybean meju (BSM) and buckwheat meju (BWM), respectively, on the basis of morphology, culture characteristics, and internal transcribed spacer and ${\beta}$-tubulin gene sequencing. In both meju, Aspergillus oryzae, Rhizopus oryzae, Penicillium polonicum, P. steckii, Cladosporium tenuissimum, C. cladosporioides, C. uredinicola, and yeast species Pichia burtonii were commonly found. Moreover, A. flavus, A. niger, P. crustosum, P. citrinum, Eurotium niveoglaucum, Absidia corymbifera, Setomelanomma holmii, Cladosporium spp. and unclassified species were identified from BSM. A. clavatus, Mucor circinelloides, M. racemosus, P. brevicompactum, Davidiella tassiana, and Cladosporium spp. were isolated from BWM. Fast growing Zygomycetous fungi is considered important for the early stage of meju fermentation, and A. oryae and A. niger might play a pivotal role in meju fermentation owing to their excellent enzyme productive activities. It is supposed that Penicillium sp. and Pichia burtonii could contribute to the flavor of the final food products. Identification of this fungal diversity will be useful for understanding the microbiota that participate in meju fermentation, and these fungal isolates can be utilized in the fermented foods and biotechnology industries.

Production and Characterization of Antifungal Chitinase of Bacillus licheniformis Isolated from Yellow Loess (황토로부터 분리한 Bacillus licheniformis의 항진균 chitinase 생산과 효소 특성)

  • Han, Gui Hwan;Bong, Ki Moon;Kim, Jong Min;Kim, Pyoung Il;Kim, Si Wouk
    • KSBB Journal
    • /
    • v.29 no.3
    • /
    • pp.131-138
    • /
    • 2014
  • In this study, we isolated two novel chitinase producing bacterial strains from yellow loess samples collected from Jullanamdo province. The chitinase producing bacteria were isolated based on the zone size of clearance in the chitin agar plates. Both of them were gram positive, rod ($2{\sim}3{\times}0.3{\sim}0.4{\mu}m$), spore-forming, and motility positive. They were facultative anaerobic, catalase positive and hydrolyzed starch, gelatin, and casein. From the 16s rRNA gene sequence analysis, the isolates were labeled as Bacillus licheniformis KYLS-CU01 and B. licheniformis KYLS-CU02. The isolates showed higher extracellular chitinase activities than B. licheniformis ATCC 14580 as a control. The optimum temperature and pH for chitinase production were $40^{\circ}C$ and pH 7.0, respectively. Response Surface Methodology (RSM) was used to optimize the culture medium for efficient production of the chitinase. Under this optimal condition, 1.5 times higher chitinase activity of B. licheniformis KYLS-CU02 was obtained. Extracellular chitinases of the two isolates were purified through ammonium sulfate precipitation and anion-exchange DEAE-cellulose column chromatography. The specific activities of purified chitinase from B. licheniformis KYLS-CU01 and B. licheniformis KYLS-CU02 were 7.65 and 5.21 U/mg protein, respectively. The molecular weights of the two purified chitinases were 59 kDa. Further, the purified chitinase of B. licheniformis KYLS-CU01 showed high antifungal activity against Fusarium sp.. In conclusion, these two bacterial isolates can be used as a biopesticide to control pathogenic fungi.

Twig Blight on Chinese Magnolia Vain Caused by Botryosphaeria dothidea in Korea (Botryosphaeria dothidea에 의한 오미자 줄기마름병)

  • Park, Sangkyu;Kim, Seung-Han;Lee, Seung-Yeol;Back, Chang-Gi;Kang, In-Kyu;Jung, Hee-Young
    • Research in Plant Disease
    • /
    • v.22 no.1
    • /
    • pp.44-49
    • /
    • 2016
  • The twig blight symptoms were observed in Chinese magnolia vine (Schisandra chinensis) at Mungyeong city, Gyeongbuk province, Korea in June 2015. The typical symptoms of infected plant were shriveled and wilted in leaves which led to blight resulted in death. Based on the morphological characteristics, the isolate was suspected as Botryosphaeria sp. Inoculation of isolated pathogen was performed to identify its pathogenicity according to Koch's postulates. Re-isolated fungi from the inoculated stem was showed same morphological characteristics with original pathogen. Phylogenetic analysis was performed using combined sequence of rDNA internal transcribed spacer region, EF1-${\alpha}$ and ${\beta}$-tubulin gene. The isolated pathogen was identified to the B. dothidea by phylogenetic analysis. This is the first report of twig blight on S. chinensis caused by B. dothidea in Korea.