• Title/Summary/Keyword: fungi sp

Search Result 576, Processing Time 0.03 seconds

Hygienic Study of Traditional Foodstuffs Subjected to the Mycotoxin (Mycotoxin을 중심으로 한 전통식품의 위생학적 연구)

  • 정덕화
    • Journal of the East Asian Society of Dietary Life
    • /
    • v.6 no.1
    • /
    • pp.105-114
    • /
    • 1996
  • Certain Fungi Including Aspergillus flavus produce low molecular secondary metabolite that is toxic to human and animals, which have been termed mycotoxin. Given the proper humidity and temperature like summer in Korea, are capable of growing of those hazard fungi and elaborating mycotoxin on almost any organic substrate such as traditional foodstuffs and their raw materials including rice, barley, corn, meju, doenjang and gochujang etc. Until now, some people have examined to isolate various fungi such as Aspergillus sp., Penicillium sp. and Fusarium sp. from traditional foodstuffs and raw materials, and have screened various mycotoxin producing strains. Some mycotoxin contamination such as aflatoxin, ochratoxin, deoxynivalenol (DON) and zearalenone etc. also have been confirmed from similar above samples. But these data are different each other and inconsistent in experimental conditions and methods. Especially, almost experiments have been finished for one time. So more consistent experimental method and data are necessary to evaluate objectiely the safety of traditional foodstuffs subjected to the mycotoxin. For this purpose, we have to apply a new advanced technology to develop more simple and rapid methods for determination of mycotoxin and also have to concentrate our efforts on activation of research and accumulation of technology nth sustaining investment of financial support and enlargement of research installation. With those harmonious efforts, it should be possible to examine continuously nd systematically the mycotoxin contamination in our traditional foodstuffs and to assure the safety of them. Then we can maintain and develop the better traditional foodstuffs suited to internationalization.

  • PDF

Mycorrhizal Root Infection and Growth of Cucumber and Tomato Plants by the Inoculated with Glomus sp. In solid Medium Culture (균근균 Glomus sp. 접종에 따른 고형배지경 오이와 방울토마토의 균근 형성과 생육)

  • Cho, Ja-Yong;Kim, Young-Ju;Jin, Seo-Young;Kang, Sung-Gu;Kim, Hong-Lim;Sohn, Bo-Kyoon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.37 no.5
    • /
    • pp.341-349
    • /
    • 2004
  • This study was conducted to compare the effects of arbuscular mycorrhizal fungi (AMF) on the growth and fruit yield of hydroponically grown cucumber and tomato plants in solid medium culture. Mycorrhizal fungus Glomus sp. was collected from plastic film house soils of cucumber and tomato and inoculated to the experimental crops at the time of seeding and transplanting. Root infection of cucumber and tomato plants by AMF was more significantly increased when the AMF was inoculated at seeding stage than at transplanting stage. In the infected roots of cucumber and tomato, mycorrhizal hyphae was easily observed but vesicle and arbuscule were rare. Overall plant growth was increased with AMF inoculation and the growth was higher when AMF was inoculated at seeding stage. Fresh weight of each fruit of cucumber and tomato and sugar content in tomato fruits were significantly increased with AMF inoculation at seeding stage. The AMF inoculation also increased fruit yields of cucumber and tomato.

Growth promotion and root development of Nicotiana tabacum L. by plant growth promoting fungi (PGPF) (식물 생장 촉진 진균에 의한 담배의 생장 촉진과 뿌리 발달)

  • Hong, Eunhye;Lee, Jinok;Kim, Sujung;Nie, Hualin;Kim, Young-Nam;Kim, Jiseong;Kim, Sunhyung
    • Journal of Plant Biotechnology
    • /
    • v.47 no.4
    • /
    • pp.337-344
    • /
    • 2020
  • Plant growth-promoting microorganisms promote plant growth by supplying nutrients to roots and interacting with the intrinsic factors in plants through volatile organic compounds (VOCs). In this study, we evaluated the effect of UOS, plant growth-promoting fungi (PGPF) isolated from previous study, on the growth of Nicotiana tabacum L. var Xanthi nc. Phylogenetic analysis and GC-MS were used to identify the fungal species and the VOCs emitted by the UOS, respectively. The fresh weight of UOS-treated Nicotiana tabacum L. was 3.8 and 4.2-fold higher than that of the control groups grown in vertical and I-plates, respectively. Moreover, in the UOS-treated plants, the length of the primary root was half and the number of lateral roots were twice compared to those in control plants. The UOS was identified as Phoma sp. by studying spore and mycelial morphology and using phylogenetic analysis. GC-MS revealed that the VOC emitted by the UOS was hexamethylcyclotrisiloxane (D3). These results suggest that the UOS of Phoma sp. influences plant growth and root development through D3. We expect this UOS and its VOC, D3 to be utilized in the future to increase growth and enhance yield for other plants.

Isolation and Characterization of Plant Growth Promoting Bacteria Pseudomonas sp. SH-26 from Peat Soil (이탄 토양으로부터 식물생육촉진세균 Pseudomonas sp. SH-26의 분리 및 특성)

  • Ho-Young Shin;Da-Son Kim;Chang-Ho Lee;Dong-Soek Lee;Song-Ih Han
    • Journal of the Korean Applied Science and Technology
    • /
    • v.41 no.2
    • /
    • pp.199-207
    • /
    • 2024
  • We conducted to investigate both plant growth-promoting and plant disease-controlling activities of bacterial strains isolated from soil. Among the 48 isolated strains, SH-23, SH-26, SH-29, and SH-33 were identified as excellent strains for the production of β-glucosidase, cellulase, amylase, and protease. These 4 strains exhibited antifungal activity against plant pathogenic fungi (Botrytis cinerea, Rhizoctonia solani, Fusarium oxysporum, Colletotrichum acutatum). Strain SH-26, which exhibited excellent organic matter decomposition and antifungal activity against plant pathogenic fungi, was selected as the final superior strain. Upon determining the 16S rRNA gene sequence of the selected SH-26 strain, it exhibited 100% similarity with Pseudomonas knackmussii HG322950 B13T, Pseudomonas citronellolis BCZY01000096 NBRC 103043T, and Pseudomonas delhiensis jgi.1118306 RLD-1T. Furthermore, it was confirmed that the Pseudomonas sp. SH-26 exhibited siderophore production, nitrogen fixation ability, and the production of Indole-3-acetic acid.

Efficient (3R)-Acetoin Production from meso-2,3-Butanediol Using a New Whole-Cell Biocatalyst with Co-Expression of meso-2,3-Butanediol Dehydrogenase, NADH Oxidase, and Vitreoscilla Hemoglobin

  • Guo, Zewang;Zhao, Xihua;He, Yuanzhi;Yang, Tianxing;Gao, Huifang;Li, Ganxin;Chen, Feixue;Sun, Meijing;Lee, Jung-Kul;Zhang, Liaoyuan
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.1
    • /
    • pp.92-100
    • /
    • 2017
  • Acetoin (AC) is a volatile platform compound with various potential industrial applications. AC contains two stereoisomeric forms: (3S)-AC and (3R)-AC. Optically pure AC is an important potential intermediate and widely used as a precursor to synthesize novel optically active materials. In this study, chiral (3R)-AC production from meso-2,3-butanediol (meso-2,3-BD) was obtained using recombinant Escherichia coli cells co-expressing meso-2,3-butanediol dehydrogenase (meso-2,3-BDH), NADH oxidase (NOX), and hemoglobin protein (VHB) from Serratia sp. T241, Lactobacillus brevis, and Vitreoscilla, respectively. The new biocatalyst of E. coli/pET-mbdh-nox-vgb was developed and the bioconversion conditions were optimized. Under the optimal conditions, 86.74 g/l of (3R)-AC with the productivity of 3.61 g/l/h and the stereoisomeric purity of 97.89% was achieved from 93.73 g/l meso-2,3-BD using the whole-cell biocatalyst. The yield and productivity were new records for (3R)-AC production. The results exhibit the industrial potential for (3R)-AC production via whole-cell biocatalysis.

Isolation and Identification of Competitive Fungi on Medium for Black Wood Ear Mushroom in Korea and In Vitro Selection of Potential Biocontrol Agents (목이버섯 배지 오염 곰팡이균의 분리, 동정 및 생물학적 방제제 선발)

  • Seoyeon Kim;Miju Jo;Sunmin An;Jiyoon Park;Jiwon Park;Sungkook Hong;Jiwoo Kim;Juhoon Cha;Yujin Roh;Da Som Kim;Mi jin Jeon;Won-Jae Chi;Sook-Young Park
    • Research in Plant Disease
    • /
    • v.30 no.1
    • /
    • pp.66-77
    • /
    • 2024
  • Black wood ear mushroom (Auricularia auricula-judae) is one of the most economically important mushrooms in China, Japan, and Korea. The cultivation of wood ear mushrooms on artificial substrates is more efficient in terms of time and cost compared with their natural growth on trees. However, if the substrate cultivation is infected by fast-growing fungi, the relatively slow-growing ear mushroom will be outcompeted, leading to economic losses. In this study, we investigated the competitive fungal isolates from substrates infected with fast-growing fungi for the cultivation of ear mushrooms in Jangheung and Sunchon, Korea. We collected 54 isolates and identified them by sequencing their internal transcribed spacer region with morphological identification. Among the isolates, the dominant isolates were Trichoderma spp. (92.6%), Penicillium spp. (5.6%), and Talaromyces sp. (1.8%). To find an appropriate eco-friendly biocontrol agent, we used five Streptomyces spp. and Benomyl, as controls against Trichoderma spp. and Penicillium spp. Among the six Streptomyces spp., Streptomyces sp. JC203-3 effectively controlled the fungi Trichoderma spp. and Penicillium spp., which pose a significant problem for the substrates of black wood ear mushrooms. This result indicated that this Streptomyces sp. JC203-3 can be used as biocontrol agents to protect against Trichoderma and Penicillium spp.

Report on the Genus Cordyceps and Its Anamorphs Collected in Korea (한국자생 동충하초의 채집 및 자원보고)

  • Nam, Sung-Hee;Jung, I-Yeon;Hong, In-Pyo;Ji, Sang-Duk;Hwang, Jae-Sam;Nguyen, Mau Tuan;Han, Myung-Sae
    • Journal of Sericultural and Entomological Science
    • /
    • v.47 no.1
    • /
    • pp.18-30
    • /
    • 2005
  • Morphological characteristics of Cordyceps species and its allies collected in Korea were clarified. Through the survey conducted from June 1999 to October 2002 in 19 mountains in Korea, 667 samples of entomogenous fungi were collected. Cordyceps and its allies of 17 species of 5 genera were identified as Cordyceps gracilioides, C. japonica, C. longissima, C. martialis, C. militaris, C. myrmecophila, C. nutans, C. pruinosa, C. sphecocephala, C. tricentri, Hirsutella nutans, Paecilomyces cicadae, P. farinosus, P. tenuipes, Paecilomyces sp., Shimizuomyces paradoxa, Tilachlidiopsis nigra. The fungi with insect hosts have been collected mainly in the place of shade or mosses near brooks and streams that had high humidity. Overall the frequenct of fungal infection in natural ecosystem was relatively low as few as 10 collections per each species. However, many species were found in terms of the few number of colleciton sites with seasonal limitations. Occurrence of the fungi in Jeju island remote from inland of the Korean peninsula were diverse in their species due to the varied weather of vertical distribution following the altitude. Three most common species were C. nutans, P. tenuipes and C. militaris, mainly found early in August when the relative humidity and temperature were high, of which C. nutans occupied the highest frequency consisting of 65% in total collections. Neither variation in ascomata arrangement in stromata nor developement of secondary spores was recognizable, while the number, shape and colour of stromata varied with insect hosts and weather conditions.

Effects of Nutrient Solution Strength and Arbuscular Mycorrhizal Fungi on Growth and Flowering of Potted Miniature Rose in Ebb and Flow System (저면관수 시스템에서 배양액 농도와 Arbuscular 균근균 처리가 분식 미니 장미의 생육 및 개화에 미치는 영향)

  • 이범선;이인호;지성희;손보균;조자용;강종구
    • Journal of Bio-Environment Control
    • /
    • v.13 no.2
    • /
    • pp.112-119
    • /
    • 2004
  • Objective of this research was to evaluate the effects of nutrient solution strength and Arbuscular Mycorrhizal Fungi (AMF, Glomus sp.) on growth and flowering of potted miniature rose (Rosa hybrids L. cv 'Scarlet'). To achieve this, plants cultured with six different strength of Japanese Horticultural Experiment Station solution (0.125, 0.25, 0.5, 1.0, 2.0, and $4.0\;{\times}\;{full}$ strength) and inoculated with AMP at cutting and transplanting. Leachate EC increased as solution strength were elevated. The leachate EC were not different between non-inoculated plants and AMF treatment at cutting, but significantly decreased when plants were inoculated with AMF at transplanting. The elevated strength of nutrient solution resulted in decrease of leachate pH. When plants were inoculated AMF at transplanting, leachate pH was lower than those of non-inoculated plants and inoculated with AMF at cutting. At harvesting (93 days after transplanting), plant height, leaf width, number of branches and shoot fresh and dry weight of rose 'Scarlet' increased with elevated nutrient solution strength. AMF treatment at transplanting of potted rose 'Scarlet' showed the best results in growth such as chlorophyll content, number of flowers, and shortening the days required to flower. The content of N, P, K, and Mn in leaf tissue of potted rose increased by elevated nutrient solution strength and AMF treatment, while the tissue Na contents decreased by an AMF treatment.

Effects of Arbuscular Mycorrhizae on Growth and Mineral Nutrient Contents in Trifoliate Orange Seedling (Arbuscular Mycorrhizae가 탱자 유묘의 생육과 무기양분 함량에 미치는 영향)

  • Oh, Hyun-Woo;Kim, Sang-Youb;Han, Hae-Ryong;Moon, Doo-Khil;Chung, Jong-Bae
    • Korean Journal of Environmental Agriculture
    • /
    • v.17 no.2
    • /
    • pp.182-188
    • /
    • 1998
  • The effect of arbuscular mycorrhizae(AM) on the growth of trifoliate orange seeding were investigated in volcanic ash soil. Trifoliate orange is used as a root stock of citrus in Cheju island. Seedings innoculated with AM fungi were grown for 16 weeks in pots of various levels of fertilizer. Growth characteristics and mineral nutrient contents were measured and spores of AM fungi colonized were identified. Seventy % of the replicsted pots of seedings were colonized by AM in the treatment of high level fertilizer and additional phosphate (40g of 21-17-17 complex fertilizer and 50g of fused phosphate added to 50L of soil). In treatments of low levels fertilizer or without fused phosphate addition, the pots colonized were less than 20 %. Colonization of trifoliate seedings with AM fungi greatly increased the growth of seedings. Shoot length and weight of shoot and root positively regressed on AM colonization ratio. AM colonization caused higher concentrations of P, Cu and Mg in plant, and the relations were significant at 5 % level. Contents of N and Zn in plants also tended to increase, while that of Ca to decrease, with increasing colonization ratio. Four species of AM fungi - Glomus deserticola, G. rubiforme, G. vesiculiferum and Acaulospora sp, - were found in the soil where roots of trifoliate orange as an innoculation materials were collected. All of the 4 species were found in the inoculated pot soils after the seedling growth, indicating that these species can be colonized in trifoliate orange roots.

  • PDF

Isolation of Antifungal Substances by Bacillus amyloliquefaciens IUB158-03 and Antagonistic Activity against Pathogenic Fungi (Bacillus amyloliquefaciens IUB158-03이 생산하는 항진균물질의 분리와 항균활성)

  • Kim, Hye-Young;Lee, Tae-Soo
    • The Korean Journal of Mycology
    • /
    • v.37 no.1
    • /
    • pp.96-103
    • /
    • 2009
  • For the control of pathogenic microorganisms, Bacillus spp. were isolated from diseased pepper fruits in Korea. Among them, Bacillus sp. IUB158-03 showed high inhibitory effect on mycelial growth and spore germination of C. gloeosporioides and Botrytis cinerea. The strain was identified as B. amyloliquefaciens IUB158-03 based on its physiological, biochemical characteristics and Microlog analysis. The highest level of antifungal substances by B. amyloliquefaciens IUB158-03 were obtained when the bacterium was cultured in medium containing 2% soluble starch, 3% yeast extract, 0.5% tryptone, 0.5% $NH_4H_2PO_4$, and 1% NaCl (pH 6.0) at $25^{\circ}C$ for 72 hrs. The antifungal substances were purified by butanol extraction, silica gel column chromatography, preparative thin layer chromatography, and high performance liquid chromatography. The purified antifungal substance was confirmed $R_f$ 0.27 by TLC. This substance exhibited antifungal activity against Fusarium solani, Rhizoctonia solani, Botrytis cineria, Alternata alternaria of plant pathogenic fungi and Trichophyton mentagrophytes, Epidermophyton floccosum, Cryptococcus neoformans of human pathogenic fungi.