• Title/Summary/Keyword: fungal metabolism

Search Result 50, Processing Time 0.027 seconds

Aflatoxins in Foods - Analytical methods and Reduction of Toxicity by Physicochemical Processes - (식품중의 Aflatoxins - 분석방법 및 이화학적 반응을 통한 저감화를 중심으로 -)

  • Hwang, Jun-Ho;Chun, Hyang-Sook;Lee, Kwang-Geun
    • Applied Biological Chemistry
    • /
    • v.47 no.1
    • /
    • pp.1-16
    • /
    • 2004
  • The purpose of this paper is to review the occurrence, analytical methods and reduction methods of aflatoxins in foods. Aflatoxins are produced by the secondary metabolism of various fungal species and have the highest toxicity among mycotoxins. Due to their toxicity including carcinogenic activity, aflatoxins affect not only the health of humans ana animals but also the economics of agriculture and food. As a food-importing country, because aflatoxins could contaminate raw commodities and foodstuffs, there should be inspection on the exposure and the regulation of risk assessment as a food safety measure. In addition, studies on rapid analytical methods and reduction of toxicity by various processes for aflatoxins should be carried out in conjunction with those of the risk assessment of aflatoxins.

Food, Nutrition and Cancer (식품, 영양과 암의 관계)

  • Rhew, Tae-Hyong
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.14 no.3
    • /
    • pp.305-313
    • /
    • 1985
  • There is a trend that the total number of cancer cases is steadily increasing as the population grows. It has been estimated that 85% of the cancer rate in the U.S. is attributed to environmental factors. Among the environmental factors, diet and nutrition appear to be related to the largest number of human cancers. Diet and nutrition might be related to cancer by several mechanisms. Food may contain a direct carcinogen or precursors that become carcinogens by spontanous reactions, or by host metabolism, or through the actions of microbial flora. Chemicals that cause cancers generally have reactive electrophilic centers which can combine with electron-rich atoms in nucleic acids and cause cancers by changing the genetic activity of the cells. A variety of factors in foods might be involved in the etiology of carcinogenesis. Chemicals in food that cause cancers include carcinogens of plants and animal origin and also those in drinking water. Other then these, fungal metabolites alcohol, asbestos, heavy metals, pesticides, and food additives might be included as food carcinogenesis. The method of cooking foods also might contribute to carcinogenesis. Some chemicals in foods act as promoters in carcinogenesis. Prevention of cancers by dietary practises have received much interest. Consumption of certain vegetables or cellulose can reduce carcinogenic activity of several compounds. A variety of antioxidants or micronutrients may be effective anticarciongens. Glutathione in the soluble fraction of the cells, is a major defense against oxidative and alkylating carcinogens. Recently anticarcinogenic activity of chlorophyll was demonstrated. Daily consumption of milk appears to effectively reduce stomach cancer.

  • PDF

Classification and Expression Profiling of Putative R2R3 MYB Genes in Rice

  • Kim, Bong-Gyu;Ko, Jae-Hyung;Min, Shin-Young;Ahn, Joong-Hoon
    • Journal of Applied Biological Chemistry
    • /
    • v.48 no.3
    • /
    • pp.127-132
    • /
    • 2005
  • MYB genes, comprising group of related genes found in animal, plant, and fungal genomes, encode common DNA-binding domains composed of one to four repeat motifs. MYB genes containing two repeats (R2R3) constitute largest MYB gene family in plants. R2R3 MYB genes play important roles in regulation of secondary metabolism, control of cell shape, disease resistance, and hormone response. Eight-four R2R3 MYB genes were retrieved from rice genome for functional characterization of MYB genes. Analysis of MYB domains revealed each MYB domain contains three ${\alpha}$-helices with regularly spaced tryptophan residues. R2R3 MYB genes were divided into four subfamilies based on phylogenic analysis result. Real-time PCR analysis of 34 MYB genes revealed 12 MYB genes were highly expressed in seeds than in leaves, whereas 4 genes were highly expressed in leaves.

Enhanced Homologous Recombination in Fusarium verticillioides by Disruption of FvKU70, a Gene Required for a Non-homologous End Joining Mechanism

  • Choi, Yoon-E.;Shim, Won-Bo
    • The Plant Pathology Journal
    • /
    • v.24 no.1
    • /
    • pp.1-7
    • /
    • 2008
  • Fusarium verticillioides (teleomorph Gibberella moniliformis) is associated with maize worldwide causing ear rot and stalk rot, and produces fumonisins, a group of mycotoxins detrimental to humans and animals. While research tools are available, our understanding of the molecular mechanisms associated with fungal virulence and fumonisin biosynthesis in F. verticillioides is still limited. One of the restraints that hampers F. verticillioides gene characterization is the fact that homologous recombination (HR) frequency is very low (<2%). Screening for a true gene knock-out mutant is a laborious process due to a high number of ectopic integrations. In this study, we generated a F. verticillioides mutant (SF41) deleted for FvKU70, a gene directly responsible for non-homologous end-joining mechanism, with the aim of improving HR frequency. Here, we demonstrate that FvKU70 deletion does not impact key Fverticillioides phenotypes, e.g., development, secondary metabolism, and virulence, while dramatically improving HR frequency. Significantly, we also confirmed that a high percentage (>85%) of the HR mutant strains harbor a desired mutation with no additional copy of the mutant allele inserted in the genome. We conclude that SF41 is suitable for use as a type strain when performing high-throughput gene function studies in F. verticillioides.

SYNTHETIC DEVELOPMENT OF NEW 1$\beta$-SUBSTITUTED CARBAPENEMS

  • Nagao, Yoshimitsu
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 1993.04a
    • /
    • pp.34-35
    • /
    • 1993
  • The Development of new asymmetric induction methods useful for syntheses of biologically active natural products and drugs, using C4-chiral 1,3-th-iazolidine-2-thiones, has been a recent focus of interest. 1-8) The present account describes the significance of particular heterocycles in the synthetic development of new 1${\beta}$-substituted carbapenems. A fungal metabolite, (+)-thienamycin (1) has attracted one's attention as a hopeful candidate for new-generation antibiotic drugs because of its strong antimicrobial activities and wide antimicrobial spectra due to the extensive inhibition against various ${\beta}$-lactamases. However, it has been serious problems toward a practically useful drug that (+)-thienamycin is fairly labile in the solution and can be metabolized by renal dehydropept- idase-I (DHP-I). Recently, a Merck Sharp & Dohme research group exploited a non-natural ${\beta}$-lactam, imipenem (2) which has been appeared in the drug market as the first carbapenem-type antibiotic drug. 9) However 2 must be used with a DHP-I inhibitor, cilastatin sodium (3).9) Thus, a 1,${\beta}$-methyl- carbapenem derivative 4 has been disclosed by the same group. 10) It seems to be more hopeful candidate as a new-generation antibiotic because it can directly resist against metabolism by the renal DHP-1 without an enzyme inhibitor 3. 10)

  • PDF

Fungal and Plant Phenylalanine Ammonia-lyase

  • Hyun, Min-Woo;Yun, Yeo-Hong;Kim, Jun-Young;Kim, Seong-Hwan
    • Mycobiology
    • /
    • v.39 no.4
    • /
    • pp.257-265
    • /
    • 2011
  • L-Phenylalanine is one of the essential amino acids that cannot be synthesized in mammals in adequate amounts to meet the requirements for protein synthesis. Fungi and plants are able to synthesize phenylalanine via the shikimic acid pathway. L-Phenylalanine, derived from the shikimic acid pathway, is used directly for protein synthesis in plants or metabolized through the phenylpropanoid pathway. This phenylpropanoid metabolism leads to the biosynthesis of a wide array of phenylpropanoid secondary products. The first step in this metabolic sequence involves the action of phenylalanine ammonialyase (PAL). The discovery of PAL enzyme in fungi and the detection of $^{14}CO_2$ production from $^{14}C$-ring-labeled phenylalanine and cinnamic acid demonstrated that certain fungi can degrade phenylalanine by a pathway involving an initial deamination to cinnamic acid, as happens in plants. In this review, we provide background information on PAL and a recent update on the presence of PAL genes in fungi.

Identification and Characterization of Calcineurin Targets in Cryptococcus neoformans

  • Park, Hee-Soo;Heitman, Joseph;Cardenas, Maria E.
    • 한국균학회소식:학술대회논문집
    • /
    • 2016.05a
    • /
    • pp.17-17
    • /
    • 2016
  • Calcineurin governs stress survival, sexual differentiation, and virulence of the human fungal pathogen Cryptococcus neoformans. Herein, we identified and characterized calcineurin substrates in C. neoformans by employing phosphoproteomic $TiO_2$ enrichment and quantitative mass spectrometry. The identified targets include the zinc finger transcription factor Crz1 and proteins whose functions are linked to P-bodies/stress granules (PBs/SGs) and mRNA translation and decay, such as Pbp1 and Puf4. We show that Crz1 is a bona fide calcineurin substrate, and localization and transcriptional activity of Crz1 are controlled by calcineurin. Several of the calcineurin targets localized to PBs/SGs, including Puf4 and Pbp1, and are required for survival at high temperature and for virulence. Genetic epistasis analysis revealed that Crz1 and the novel targets Lhp1, Puf4, and Pbp1 function in a branched calcineurin pathway that orchestrates stress survival and virulence. These findings propose that calcineurin controls thermal stress and virulence at the transcriptional level via Crz1 and post-transcriptionally by regulating target factors involved in mRNA metabolism.

  • PDF

Transcriptional Interplay between Malassezia restricta and Staphylococcus Species Co-Existing in the Skin Environment

  • Hyun Oh Yang;Yong-Joon Cho;Jae Min Lee;Kyoung-Dong Kim
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.3
    • /
    • pp.319-328
    • /
    • 2023
  • Malassezia and Staphylococcus are the most dominant genera in human skin microbiome. To explore the inter-kingdom interactions between the two genera, we examined the transcriptional changes in Malassezia and Staphylococcus species induced upon co-culturing. RNA-seq analyses revealed that genes encoding ribosomal proteins were upregulated, while those encoding aspartyl proteases were downregulated in M. restricta after co-culturing with Staphylococcus species. We identified MRET_3770 as a major secretory aspartyl protease coding gene in M. restricta through pepstatin-A affinity chromatography followed by mass spectrometry and found that the expression of MRET_3770 was significantly repressed upon co-culturing with Staphylococcus species or by incubation in media with reduced pH. Moreover, biofilm formation by Staphylococcus aureus was inhibited in the spent medium of M. restricta, suggesting that biomolecules secreted by M. restricta such as secretory aspartyl proteases may degrade the biofilm structure. We also examined the transcriptional changes in S. aureus co-cultured with M. restricta and found co-cultured S. aureus showed increased expression of genes encoding ribosomal proteins and downregulation of those involved in riboflavin metabolism. These transcriptome data of co-cultured fungal and bacterial species demonstrate a dynamic interplay between the two co-existing genera.

Rice OsACDR1 (Oryza sativa Accelerated Cell Death and Resistance 1) Is a Potential Positive Regulator of Fungal Disease Resistance

  • Kim, Jung-A;Cho, Kyoungwon;Singh, Raksha;Jung, Young-Ho;Jeong, Seung-Hee;Kim, So-Hee;Lee, Jae-eun;Cho, Yoon-Seong;Agrawal, Ganesh K.;Rakwal, Randeep;Tamogami, Shigeru;Kersten, Birgit;Jeon, Jong-Seong;An, Gynheung;Jwa, Nam-Soo
    • Molecules and Cells
    • /
    • v.28 no.5
    • /
    • pp.431-439
    • /
    • 2009
  • Rice Oryza sativa accelerated cell death and resistance 1 (OsACDR1) encodes a putative Raf-like mitogen-activated protein kinase kinase kinase (MAPKKK). We had previously reported upregulation of the OsACDR1 transcript by a range of environmental stimuli involved in eliciting defense-related pathways. Here we apply biochemical, gain and loss-of-function approaches to characterize OsACDR1 function in rice. The OsACDR1 protein showed autophosphorylation and possessed kinase activity. Rice plants overexpressing OsACDR1 exhibited spontaneous hypersensitive response (HR)-like lesions on leaves, upregulation of defense-related marker genes and accumulation of phenolic compounds and secondary metabolites (phytoalexins). These transgenic plants also acquired enhanced resistance to a fungal pathogen (Magnaporthe grisea) and showed inhibition of appressorial penetration on the leaf surface. In contrast, loss-of-function and RNA silenced OsACDR1 rice mutant plants showed downregulation of defense-related marker genes expressions and susceptibility to M. grisea. Furthermore, transient expression of an OsACDR1:GFP fusion protein in rice protoplast and onion epidermal cells revealed its localization to the nucleus. These results indicate that OsACDR1 plays an important role in the positive regulation of disease resistance in rice.

The Role of Resveratrol in Lipid Metabolism: A Systematic Review of Current Basic and Translational Evidence (레스베라트롤의 지질 대사 효과에 대한 체계적 문헌 고찰)

  • Choi, Seung Kug;Moon, Hyun-Seuk
    • Journal of Food Hygiene and Safety
    • /
    • v.31 no.2
    • /
    • pp.67-73
    • /
    • 2016
  • Resveratrol is a non-flavonoid polyphenol which belongs to the stilbenes group and is naturally generated in several plants in response to damage or fungal invasion. It has been shown in published studies that resveratrol has an anti-adipogenic effect. A good consensus regarding the involvement of a down-regulation of $C/EBP{\alpha}$ and $PPAR{\gamma}$ in this effect has been reached. In addition, different metabolic pathways involved in triacylglycerol metabolism in white adipose tissue have been shown to be regulated by resveratrol. Concerning lipolysis, though this compound in itself seems to be unable to cause lipolysis, it increases lipid mobilization stimulated by ${\beta}-adrenergic$ agents. The increase in brown adipose tissue thermogenesis, and accordingly the associated energy dissipation, can attribute to accounting for the body-fat reducing effect of resveratrol. Besides its effects on adipose tissue, resveratrol can also acts on other organs and tissues. Therefore, it increases mitochondrial biogenesis and accordingly fatty acid oxidation in skeletal muscle and liver. This effect can also attribute to the body-fat reducing effect of this molecule. The present review purposes to collect the evidence concerning the potential mechanisms of action which underlie the anti-obesity effects of resveratrol, acquired either in cultured cells lines and animal models.