• Title/Summary/Keyword: fungal inoculation

Search Result 178, Processing Time 0.272 seconds

연작장해지토양(連作障害地土壤)의 식물독소(植物毒素)에 관(關)한 연구(硏究) 제(第)3보(報) Siderophore 생성(生成) Pseudomonas 속(屬) 세균접종(細菌接種) 및 양(陽) ion 첨가(添加)가 토양부생균(土壤腐生菌)의 생육(生育)에 미치는 영향(影響) (Studies on Phytotoxin in Intensively Cultivated Upland Soil III. The Abilities of Siderophore Formation, Competition and Absorption of Fe3+ and Mn2+ with Inoculation of the Fluorescence Forming Soil Bacteria and Soil Saprophytic Fungi)

  • 이상규;서장선
    • 한국토양비료학회지
    • /
    • 제21권1호
    • /
    • pp.41-47
    • /
    • 1988
  • 토양중(土壤中) 향광색소생성세균(螢光色素生成細菌)에서 형성(形成)되는 3가철등(價鐵等)의 양(陽) ion 결합물질(結合物質)인 Siderophore 생성(生成)이 토양부생성사상균(土壤腐生成絲狀菌)의 생육(生育) 및 $Fe^{3+}$$Mn^{2+}$의 흡수이용(吸收利用)에 관(關)한 영향(影響)을 밝히고저 실내실험(室內實驗)한 결과(結果)는 다음과 같다. 1. 형광색소생성(螢光色素生成) 토양세균(土壤細菌)인 Pseudomonas putida Pt-II의 인공배지(人工培地)에 접종(接種)은 Siderophore 생성(生成)을 증가(增加)시켰다. 2. 경시적(徑時的) Siderophore 생성량(生成量)은 3가철(價鐵)의 첨가(添加)로 감소(減少)되었으며 철결합물질(鐵結合物質)인 EDDHA와 유사(類似)한 작용(作用)을 보였다. 3. Siderophore 농도(濃度)의 증가(增加)는 토양부생성(土壤腐生性) 사상균(絲狀菌)의 생육(生育)을 억제(抑制)하였으며 억제(抑制)의 정도(程度)는 독소생성(毒素生成) 사상균(絲狀菌)인 Stachybotrys chatarum과 F. solani에서 강(强)하였으나 F. oxysporum에 대해서는 억제력(抑制力)이 약(弱)하였다. 4. 인공배지내(人工培地內)에서 $Mn^{2+}$의 농도변화(濃度變化)는 Siderophore 생성(生成)에 영향(影響)하지 못하였으나 토양부생성사상균(土壤腐生性絲狀菌)의 생체중(生體重) 증가(增加)와는 정상관관계(正相關關係)를 보였음.

  • PDF

선충포획성 Arthrobotrys속균에 의한 소나무재선충 포획 특성 (Characteristics of Pinewood Nematode Trapping by Nematophagous Arthrobotrys spp.)

  • 이각중;구창덕;성주한
    • 한국균학회지
    • /
    • 제36권2호
    • /
    • pp.153-162
    • /
    • 2008
  • Arthrobotrys속 균은 불완전균으로 토양선충을 포획하는 살선충 곰팡이다. 본 논문에서는 선충포획성 균종인 A. oligospora, A. dactyloides, A. conoides의 균사생장, 선충 포획기작의 특성, 그리고 소나무재선충에 대한 감염능력을 이해하여 살선충 효과가 높은 균종을 알고자 하였다. 소나무재선충은 잿빛곰팡이(Botrytis cinera)에 접종해 증식시켰으며 여기에 Arthrobotrys속 3종 각각의 균사배양체 $1\;cm^2$씩 접종하고 배지, 온도, pH, 소나무재선충 접종밀도, 영양조건이 균사의 생장에 미치는 영향을 측정하였다. 그 결과 전체적으로 A. conoides의 생장이 가장 빨랐으며(13.9 mm/day, PDA) A. dactyloides가 가장 느렸다(3 mm/day, PDA). 3가지 균의 생장은 PDA배지, $25^{\circ}C$, pH 4.5의 조건에서 가장 양호하였다. A. conoides 균과 A. oligospora 균은 500마리의 재선충 접종으로 생장이 촉진됐으나, 10,000마리 접종으로는 느려졌다. A. dactyloides는 산성에서 생장하지 않았으며 재선충이 많을수록 더 느렸다. A. conoides와 A. oligospora의 선충포획기관은 균사보다 굵은 고리들의 망상 구조로서 선충 존재시만 형성되었으나, A. dactyloides의 포획기관은 단일한 원모양으로 선충이 없어도 형성되었다. A. conoides가 A. oligosora보다 포획기관 형성이 빨랐으며, 재선충 포획 후 균사가 재선충 내부로 침입하여 작고 많은 침입구(infection bulb)를 만들고 선충을 소화하였다. 그러나 A. dactyloides는 포획기관의 수가 적었고 포획도 하지 못하였다. A. conoides의 재선충 감염율은 95%였고, A. oligospora의 감염율은 80%였다. 그리고 위 두 균의 조합접종에 의한 선충감염율은 92%였다. 그러나 A. dactyloides는 오히려 재선충의 밀도를 증가시켰다. A. conoides 균은 빠른 생장률과 초기 포획으로, A. oligospora는 균밀도를 증가시켜서 재선충 감염율을 높였다. 결론적으로 A. conoides균은 균사생장률과 재선충감염율이 높으므로 소나무재선충의 생물학적 방제에 이용될 수 있을 것이라 생각한다.

Evaluation of Watermelon Germplasm for Resistance to Phytophthora Blight Caused by Phytophthora capsici

  • Kim, Min-Jeong;Shim, Chang-Ki;Kim, Yong-Ki;Jee, Hyeong-Jin;Hong, Sung-Jun;Park, Jong-Ho;Han, Eun-Jung
    • The Plant Pathology Journal
    • /
    • 제29권1호
    • /
    • pp.87-92
    • /
    • 2013
  • This study was conducted to determine the Phytophthora rot resistance of 514 accessions of watermelon germplasm, Citrullus lanatus var lanatus. About 46% of the 514 accessions tested were collections from Uzbekistan, Turkey, China, U.S.A., and Ukraine. Phytophthora capsici was inoculated to 45-day-old watermelon seedlings by drenching with 5 ml of sporangial suspension ($10^6$ sporangia/ml). At 7 days after inoculation, 21 accessions showed no disease symptoms while 291 accessions of susceptible watermelon germplasm showed more than 60.1% disease severity. A total of 510 accessions of watermelon germplasm showed significant disease symptoms and were rated as susceptible to highly susceptible 35 days after inoculation. The highly susceptible watermelon germplasm exhibited white fungal hyphae on the lesion or damping off with water-soaked and browning symptoms. One accession (IT032840) showed moderate resistance and two accessions (IT185446 and IT187904) were resistant to P. capsici. Results suggest that these two resistant germplasm can be used as a rootstock and as a source of resistance in breeding resistant watermelon varieties against Phytophthora.

Biocontrol Activity of Aspergillus terreus ANU-301 against Two Distinct Plant Diseases, Tomato Fusarium Wilt and Potato Soft Rot

  • Choi, Hyong Woo;Ahsan, S.M.
    • The Plant Pathology Journal
    • /
    • 제38권1호
    • /
    • pp.33-45
    • /
    • 2022
  • To screen antagonistic fungi against plant pathogens, dual culture assay (DCA) and culture filtrate assay (CFA) were performed with unknown soil-born fungi. Among the different fungi isolated and screened from the soil, fungal isolate ANU-301 successfully inhibited growth of different plant pathogenic fungi, Colletotrichum acutatum, Alternaria alternata, and Fusarium oxysporum, in DCA and CFA. Morphological characteristics and rDNA internal transcribed spacer sequence analysis identified ANU-301 as Aspergillus terreus. Inoculation of tomato plants with Fusarium oxysporum f. sp. lycopersici (FOL) induced severe wilting symptom; however, co-inoculation with ANU-301 significantly enhanced resistance of tomato plants against FOL. In addition, culture filtrate (CF) of ANU-301 not only showed bacterial growth inhibition activity against Dickeya chrysanthemi (Dc), but also demonstrated protective effect in potato tuber against soft rot disease. Gas chromatography-tandem mass spectrometry analysis of CF of ANU-301 identified 2,4-bis(1-methyl-1-phenylethyl)-phenol (MPP) as the most abundant compound. MPP inhibited growth of Dc, but not of FOL, in a dose-dependent manner, and protected potato tuber from the soft rot disease induced by Dc. In conclusion, Aspergillus terreus ANU-301 could be used and further tested as a potential biological control agent.

Occurrence of Root Rot caused by Fusarium fujikuroi on Adzuki Bean in Korea

  • Min Sun Ha;Hyunjoo Ryu;Sung Kee Hong;Ho Jong Ju;Hyo-Won Choi
    • 한국균학회지
    • /
    • 제50권4호
    • /
    • pp.319-329
    • /
    • 2022
  • In July 2020, wilting symptoms were observed among adzuki bean plants (Vigna angularis var. angularis L.) in the fields in Yeosu, Korea. Infected plants showed yellowing of leaves, browning inside the stems, splitting of stem bark, and wilting. When these plants were uprooted, their roots were found to be brown. The fungal pathogens NC20-737, NC20-738, and NC20-739 were isolated from symptomatic stem and root tissues. These pathogens were identified as a Fusarium fujikuroi species complex based on their morphological characteristics. Molecular identification was performed using the DNA sequence of translation elongation factor 1 alpha and the RNA polymerase II second largest subunit regions. The nucleotide sequences of all three isolates were similar to the F. fujikuroi reference isolates NRRL 13566 and NRRL 5538 of the National Centre for Biotechnology Information GenBank. A pathogenicity test was conducted by the soil inoculation method with cornmeal sand inoculum. Approximately 3 weeks after inoculation, symptoms were observed only in the inoculated adzuki bean seedlings. To the best of our knowledge, this is the first report of Fusarium root rot caused by F. fujikuroi in adzuki beans, both in Korea and worldwide.

A New Method for Cultivation of Sclerotium of Grifola umbellata

  • Choi, Kyung-Dal;Lee, Kyung-Tae;Shim, Jae-Ouk;Lee, Youn-Su;Lee, Tae-Soo;Lee, Sang-Sun;Guo, Shun-Xing;Lee, Min-Woong
    • Mycobiology
    • /
    • 제31권2호
    • /
    • pp.105-112
    • /
    • 2003
  • Sclerotia of Grifola umbellata were cultivated by two methods such as burying and root inoculation methods. The sclerotia of G. umbellata produced by the burying method were $6.0{\sim}6.8{\times}3.4{\sim}4.6{\times}1.8{\sim}1.9cm$(Width$\times$Length$\times$Thickness) in size and $17.3{\sim}19.6g$ in weight, respectively. Their increase rate was $1.10{\times}1.12$ times. On the other hand, the sclerotia cultivated by the root inoculation method were $18.3{\sim}31.5{\times}12.5{\sim}26.4{\times}3.1{\sim}3.7cm(W{\times}L{\times}T)$ in size and $219.1{\sim}576.6g$ in weight, respectively. Their growth increment was $11.18{\sim}39.77$ times. The rhizomorphs of Armillaria mellea were developed with a high density under fallen leaves layer covering cultivation site, and distributed mainly between soil surface and soil depth of about 10 cm as well as colonized prominently on the inoculated wood logs. Fungal interaction between G. umbellata and A. mellea were observed mainly in the stage of white sclerotium of G. umbellata. The sclerotia of G. umbellata which were developed newly and harvested in the root inoculation method were twined with root hairs of host tree and rhizomorphs of A. mellea. The sclerotia of G. umbellata decomposing root hairs of host tree were confirmed through SEM examination. Physiochemical characteristics of soil in all cultivation sites had no significant differences. Soil pH were in the range of pH $3.98{\sim}4.40$. Organic matters were the range of $17.97{\sim}23.86%$ and moisture contents of soil were $12.00{\sim}18.20%$. Soil temperatures showed $12.9{\sim}13.8^{\circ}C$ in November and $22.0{\sim}23.9^{\circ}C$ in August, respectively. In conclusion, the root inoculation method seems to be a practical method for cultivating sclerotia of G. umbellata due to its many advantages such as simplicity of inoculation process, shortening of cultivation periods and facility of harvest.

고사목에서 발견되는 저병원성 소나무재선충 및 이의 인공접종에 의하여 유도되는 소나무의 저항성 (Low-pathogenic Pinewood Nematode Found in Dead Trees and Resistance of Pines Induced by Its Pre-inoculation)

  • 박승찬;문일성;김동수
    • 한국응용곤충학회지
    • /
    • 제53권2호
    • /
    • pp.141-147
    • /
    • 2014
  • 소나무재선충은 현재까지 도입된 국가의 토착수종인 소나무류를 모두 치사시키는 것으로 알려져 있으나, 고사목으로부터 추출 배양된 계통 중에는 소나무에 피해를 주지 않는 계통이 존재한다. 이러한 저병원성 계통 선충의 사전접종이 고병원성 소나무재선충에 대한 소나무의 저항성에 미치는 영향을 조사하기 위하여 연구가 수행되었다. 치수에 저병원성 소나무재선충을 선접종한 결과, 선접종에 의하여 소나무재선충에 대한 저항력이 유도되었다. 그 유도저항성은 1년 후까지 유지되었으며, 저병원성 선충의 반복 감염은 보다 저항성 유도 효과가 큰 것으로 나타났다. 소나무재선충에 의하여 고사한 후 경과기간이 3개월 이하인 피해목 및 피해진행목에서 분리된 선충은 모두 고병원성이었으며, 고사 후 2-3년이 경과한 벌채목에서 분리된 선충 5계통 중 4계통은 저병원성이었다. 저병원성 선충이 소나무 치수에 인공접종 되었을 때 초기 정착률은 고병원성 선충과 차이가 없었으나, 접종 30일 후에 수목내의 부위별 개체수를 조사한바 저병원성 선충의 증식률은 고병원성보다 현저히 낮았다. 저병원성 선충의 잿빛곰팡이병 균사배지에서의 선충증식 속도는 계통에 따라 차이가 있었으며, 증식속도가 빠른 계통은 대체로 고병원성 선충의 증식속도와 차이가 없었다.

Fusarium Wilt of Winter Daphne (Daphne odora Thunb.) Caused by Fusarium oxysporum

  • Kim, Gyoung-Hee;Hur, Jae-Seoun;Choi, Woo-Bong;Koh, Young-Jin
    • The Plant Pathology Journal
    • /
    • 제21권2호
    • /
    • pp.102-105
    • /
    • 2005
  • Severe wilt disease epidemic was found on winter daphnes (Daphne odora Thunb.) cultivated in farmers, nurseries in Suncheon, Jeonnam in 2003. Typical symptoms appeared on the leaves of winter daphne as yellowish wilts and turned brown from the lower leaves on the same plant. Severely infected leaves were defoliated, resulting in blight of stems and eventual death of the entire plant. Black decayed vascular tissues were distinctly observed in a wilted plant. Fusarium sp. was isolated from the diseased plants repeatedly and its pathogenicity was confirmed by artificial inoculation on healthy plants. The fungus was identified as Fusarium oxysporum on the basis of the morphological and cultural characteristics on potato dextrose agar and carnation leaf agar. The optimum temperature for fungal growth was around $25{\circ}C$ and the fungal growth was inhibited by metconazole, triflumizole and trifloxystrobin on potato dextrose agar. This is the first report on the wilt disease of winter daphnes caused by F.oxysporum in Korea.

Isolation and Identification of Entomopathogenic Fungus from the Pine Wilt Disease Vector, Monochamus alternatus Hope(Coleoptera: Cerambycidae) in Korea

  • Shin, Tae-Young;Choi, Jae-Bang;Bae, Sung-Min;Cha, Ye-Rim;Oh, Jeong-Mi;Koo, Hyun-Na;Woo, Soo-Dong
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • 제18권2호
    • /
    • pp.125-129
    • /
    • 2009
  • Entomopathogenic fungi were isolated directly from a cadaver of adult Monochamus alternatus supporting fungal sporulation, using a semi-selective medium and then screened several fungal colonies. The pathogenicity of each fungus was tested using oak longicorn beetle, Moechotypa diphysis, as substitutive insect. As the result, only one of them showed high pathogenicity against M. diphysis, with up to 100% mortality within 21 days of inoculation. Selected fungus was named as MaW1 and identified by Beauveria bassiana using microscopic examination and DNA analysis. Pathogenicity was also evaluated to M. alternatus.

영지 노랑병 방제에 효과적인 살균제의 선발 (Selection of Effective Fungicides Against Xylogone sphaerospora, a Fungal Pathogen of Cultivated Mushroom, Ganoderma lucidum)

  • 최경자;이종규;우성희;조광연
    • 한국식물병리학회지
    • /
    • 제14권5호
    • /
    • pp.491-495
    • /
    • 1998
  • A fungal disease of the cultivated mushroom, Ganoderma lucidum, caused by Xylogone sphaerospora was epidemic throughout all cultivation areas in Korea which caused a lot of yield losses in the mushroom production. For controlling the disease, the screening of effective fungicides against the pathogenic fungus were conducted. Thirty seven commercially available fungicides were tested for their inhibitory activities on potato dextrose agar media supplemented with these fungicides at various concentrations. Twenty one fungicides significantly inhibited mycelial growth of the pathogen, Xylogone sphaerospora, but 16 fungicides had no inhibitory effect. Among these 21 fungicides, 17 fungicides also inhibited mycelial growth of Ganoderma lucidum as well, but imazalil, procymidone, triforine, and vinclozolin had no inhibitory effects. However, vinclozolin showed no inhibitory effect on mycelial growth of the mushroom even at the concentration of 50 $\mu\textrm{g}$/ml vinclozolin solution for 2 hours, and then the pathogen was inoculated. After two month-cultivation of the mushroom, over 90% of logs treated with vinclozolin without pathogen inoculation produced fruiting bodies. However, fruiting bodies were not produced form the logs inoculated with the pathogen, but not treated with vinclozolin. Fifty seven percent of logs. which were pre-treated with vinclozolin and then inoculated with the pathogen produced fruiting bodies. Based on the results, vinclozolin is effective for the control of yellow disease of the Ganoderma lucidum caused by Xylogone sphaerospora.

  • PDF