• Title/Summary/Keyword: fungal inoculation

Search Result 179, Processing Time 0.029 seconds

Characterization of the Genes Involved in Induced Systemic Resistance in Cucumber Plants

  • Kim, Mi-Seong;Cho, Song-Mi;Im, Yang-Ju;Kim, Young-Cheol;Yang, Kwang-Yeol;Lee, Myung-Chul;Kim, Kwang-Sang;Cho, Baik-Ho
    • Korean Journal of Plant Resources
    • /
    • v.20 no.2
    • /
    • pp.216-219
    • /
    • 2007
  • Root colonization by a rhizobacterium, Pseudomonas chlororaphis O6, elicited induced systemic resistance (ISR) in the leaves of cucumber plants against fungal and bacterial pathogens. To understand the role of unique genes during strain O6-mediated ISR, a suppressive subtractive hybridization method was undertaken and led to isolation of twenty-five distinct genes. The transcriptional levels of all the genes showed an increase much earlier under O6 treatment than in water control plants only after challenge with pathogen, while no difference detected on the plants without pathogen challenge. This suggests that O6-mediated ISR is associated with the priming phenomenon, an enhanced capacity for the rapid and effective activation of cellular defense responses after challenge inoculation.

A Rapid Radicle Assay for Prescreening Antagonistic Bacteria Against Phytophthora capsici on Pepper

  • Chang, Sung-Hwan;Kwack, Min-Sun;Kim, Yun-Sung;Lee, Jung-Yeop;Kim, Ki-Deok
    • Mycobiology
    • /
    • v.29 no.4
    • /
    • pp.218-223
    • /
    • 2001
  • A rapid radicle assay for prescreening antagonistic bacteria to Phytophthora capsic4 causal agent of Phytophthora blight of pepper was developed. Sixty-four bacterial strains with in vitro antifungal activity selected out of 1,400 strains isolated from soils of Ansung, Chunan, Koyang, and Paju, Korea in 1998 were used for development of the bioassay. Uniformly germinated pepper seeds dipped in bacterial cells for 3 hours were placed near the edges of growing mycelia of P. capsici on water agar containing 0.02% glucose. Five-week-old pepper plants(cv. Nockwang) were inoculated to compare with results of the radicle assay developed in this study. For plant inoculation, pepper seeds were sown in potting mixtures incorporated with the bacterial strains, then transplanted into steam-sterilized soils 3 weeks later. Plants were hole-inoculated with zoospores of P. capsici 2 weeks after transplanting. Disease incidence and severity were determined in radicle and plant assessments, respectively. In radicle assay, six strains, GK-B15, GK-B25, OA-B26, OA-B36, PK-B09, and VK-B14 consistently showed the significant(P=0.05) disease reduction against radicle infection by the fungus, four of which also did in plant assessments. Strains OA-B36 and GK-B15 consistently reduced the fungal infection in both the radicle assay and the plant assessment. Therefore, prescreening strains using the radicle assay developed in this study followed by plant assay could reduce time and labor, and improved the possibility of selecting antagonistic bacteria for control of Phytophthora blight of peppers.

  • PDF

Identification of Grovesinia moricola Causing Zonate Leaf Spots on Lespedeza cyrtobotrya in Korea (참싸리 겹둥근무늬병균 Grovesinia moricola 동정)

  • Park, Ji-Hyun;Jung, Bok-Nam;Lee, Sang-Hyun;Shin, Hyeon-Dong
    • The Korean Journal of Mycology
    • /
    • v.48 no.1
    • /
    • pp.69-74
    • /
    • 2020
  • In September 2017, a heavy damage by premature defoliation with the zonate leaf spots was observed in several shrubs of Lespedeza cyrtobotrya growing at Mt. Obongsan in Chuncheon, Korea. Numerous cone-shaped, white sporophores of a fungus were observed on lesions of the abaxial leaf surface. A similar fungus was isolated in September 2019 from the leaves of L. cyrtobotrya growing at Mt. Taegisan in Hoengseong, Korea. The morphological characteristics of the sporophores were consistent with those of Grovesinia moricola. The species identification was confirmed by sequencing the internal transcribed spacer (ITS) region of the ribosomal DNA from the two isolates (KACC48417 and KACC48934). The fungal pathogenicity was determined by an artificial inoculation in conditions of relative humidity and temperature of 100% and 15±2℃, respectively. This is the first report of association of G. moricola with L. cyrtobotrya in Korea.

Identification of Fusarium fujikuroi Isolated from Barnyard Grass and Possibility of Inoculum Source of Bakanae Disease on Rice (피에서 분리한 Fusarium fujikuroi의 동정 및 벼 키다리병의 전염원 가능성)

  • Choi, Hyo-Won;Lee, Yong-Hwan;Hong, Sung-Kee;Kim, Wan-Gyu;Lee, Young-Kee;Chun, Se-Chul
    • Research in Plant Disease
    • /
    • v.17 no.1
    • /
    • pp.82-85
    • /
    • 2011
  • Bakanae disease symptom were observed in barnyard grass in paddy field in Heanam, Jeonnam. The infected plants were blighted and white mass of spore were formed on the stem. Fusarium species were isolated from infected stem and the isolates were identified as Fusarium fujikuroi based on their morphological and molecular characteristics. The isolates of F. fujikuroi were assigned to reference of F. fujikuroi among related Fusarium species based on the translation elongation factor 1-alpha gene sequence. Pathogenicity of the fungal isolates was confirmed on seedlings of rice and barnyard grass by artificial inoculation. The results indicated that barnyard grass can be inoculum source of Bakanae disease on rice. Thus, effective weed management is necessary to Bakanae disease control and healthy seed production.

Biological Control of Apple Ring Rot on Fruit by Bacillus amyloliquefaciens 9001

  • Li, Yan;Han, Li-Rong;Zhang, Yuanyuan;Fu, Xuechi;Chen, Xinyi;Zhang, Lixia;Mei, Ruhong;Wang, Qi
    • The Plant Pathology Journal
    • /
    • v.29 no.2
    • /
    • pp.168-173
    • /
    • 2013
  • Apple ring rot disease, caused by Botryosphaeria dothidea (Moug. ex. Fr) Ces. et de Not., is one of the most important diseases on apple fruits. In this study, strain 9001 isolated from healthy apple fruits from an infested orchard was evaluated for its biocontrol activity against apple ring rot in vitro and in vivo. Strain 9001 showed obvious antagonistic activity to B. dothidea YL-1 when plated on potato dextrose agar. Soaking healthy apples in the bacterial suspensions of strain 9001 prior to artificial inoculation of fungal pathogen resulted in a dramatic decrease in disease incidence when compared to the control. Moreover, either field application in the growth season or postharvest treatment of apples from infected orchards with bacterial suspensions of strain 9001 resulted in significantly reduced disease incidence within the storage period for 4 months at room temperature. Based on the phylogenetic analysis of 16S rRNA and the gyrA gene, strain 9001 was identified as Bacillus amyloliquefaciens. These results indicated that B. amyloliquefaciens 9001 could be a promising agent in biocontrol of apple ring rot on fruit, which might help to minimize the yield loss of apple fruit during the long postharvest period.

Identification of Cylindrocarpon destructans Associated with Root Rot Disease of Strawberry (딸기 뿌리썩음병(病)에 관여하는 Cylindrocarpon destructans의 분리(分離) 동정(同定))

  • Sung, Jae-Mo;Song, Yoong-Nam;Yang, Sung-Suk
    • The Korean Journal of Mycology
    • /
    • v.13 no.3
    • /
    • pp.179-183
    • /
    • 1985
  • Cylindrocarpon spp. were isolated from the soil where strawberry was grown in Suweon by soil plate method: colonies reaching 10 mm diam. in seven days at about $20^{\circ}C$; sporodochia with cream to beige to conidial slime commonly produced; conidiophore repeatedly branched and bearing subulate phialides; macroconidia cylindrical in the center part, straight or slightly curved and mostly $1{\sim}3\;septate,\;22{\sim}45\;{\times}\;5.0{\sim}6.0\;{\mu}m$; chlamydospore abundantly produced, intercalary or terminal on mycelium, singly or in chains and smooth or warted. The hypha and spore were easily fused each other on water agar. This fungus was pathogenic strawberry as a result of inoculation test. The symptom showed dwarf and yellowing at top and rotted roots under the ground. The fungus was identified as Cylindrocarpon destructans Scholten from the shape of conidiophores and conidia, mycelial growth and pathogenicity test.

  • PDF

Assessment of the Soybean Yield Reduction due to Infection of Septoria Brown Spot, Septoria glycines Hemmi (대두 갈색무늬병에 의한 수량감소의 평가)

  • Oh Jeung Haing;Kwon Shin Han
    • Korean journal of applied entomology
    • /
    • v.22 no.1 s.54
    • /
    • pp.7-14
    • /
    • 1983
  • Septoria brown spot closed by Septoria glycines is one of the most serious fungal diseases in soybean. Average yield reduction of 3 varieties for two years was $16.1\%$ by the septoria brown spot inoculation and $9.0\%$ by the natural infection as compared to fungicide-sprayed plots. Number of pods per plant and seed weight were significantly reduced while plant height, number of branches and number of nodes per plant were not affected. Yield reduction was positively correlated to the septoria brown spot severity in all varieties examined. Correlation coefficient $(r=0.38^*)$ between yield reduction and area under the disease progress curve was higher than that (r=0.156) between yield reduction and Van der Plank's apparent infection rate. Potential effect of the septoria brown spot on the soybean yield reduction estimated with the area under the disease progress curve was expressed by the equation of Y=4.38+0.05X $(r=0.0696^*,\;df=25)$.

  • PDF

Identification of Fusarium Species Associated with Corn Ear Rot (옥수수 이삭썩음병에 관여하는 Fusarium속균의 동정)

  • Choi, Hyo-Won;Kim, Jung-Mi;Kim, Jin-Hee;Hong, Sung-kee;Kim, Wan-Gyu;Chun, Se-Chul
    • The Korean Journal of Mycology
    • /
    • v.37 no.2
    • /
    • pp.121-129
    • /
    • 2009
  • In 2007, a total of 77 isolates of Fusarium spp. were obtained from ear rot symptoms of corns collected from 5 locations in Gangwon Province, Korea. The fungal isolates were identified based on their morphological features. Out of the isolates, fifteen isolates were identified as Fusarium verticillioides which formed microconidia in long chains on monophialides. Four isolates were identified as F. subglutinans which formed microconida only on false heads. Six isolates were identified as F. graminearum which produced red pigment in PDA culture. Besides these Fusarium species, F. napiform, F. nygamai, and F. oxysporum were identified from the rest isolates. To assess for genetic diversity of the isolates, a random amplified polymorphic DNA(RAPD) technique was carried out using URP primers. The results from the RAPD analysis showed that the isolates from corn were divided into 6 groups. These RAPD groups of the Fusarium species corresponded to morphological characters of the Fusarium species. The phylogenetic analysis of most isolates by DNA sequencing of EF-1$\alpha$ gene corresponded to morphological characters of the Fusarium species. The results of pathogenicity tests by two inoculation methods revealed that F. verticillioides, F. graminearum and F. subglutinans are strongly pathogenic to corn stalks.

Molecular Markers for Detecting a Wide Range of Trichoderma spp. that Might Potentially Cause Green Mold in Pleurotus eryngii

  • Lee, Song Hee;Jung, Hwa Jin;Hong, Seung-Beom;Choi, Jong In;Ryu, Jae-San
    • Mycobiology
    • /
    • v.48 no.4
    • /
    • pp.313-320
    • /
    • 2020
  • In Pleurotus sp., green mold, which is considered a major epidemic, is caused by several Trichoderma species. To develop a rapid molecular marker specific for Trichoderma spp. that potentially cause green mold, eleven Trichoderma species were collected from mushroom farms and the Korean Agricultural Culture Collection (KACC). A dominant fungal isolate from a green mold-infected substrate was identified as Trichoderma pleuroticola based on the sequences of its internal transcribed spacer (ITS) and translation elongation factor 1-α (tef1) genes. In artificial inoculation tests, all Trichoderma spp., including T. atroviride, T. cf. virens, T. citrinoviride, T. harzianum, T. koningii, T. longibrachiatum, T. pleurotum, and T. pleuroticola, showed pathogenicity to some extent, and the observed symptoms were soaked mycelia with a red-brown pigment and retarded mycelium regeneration. A molecular marker was developed for the rapid detection of wide range of Trichoderma spp. based on the DNA sequence alignment of the ITS1 and ITS2 regions of Trichoderma spp. The developed primer set detected only Trichoderma spp., and no cross reactivity with edible mushrooms was observed. The detection limits for the PCR assay of T. harzianum (KACC40558), T. pleurotum (KACC44537), and T. pleuroticola (CAF-TP3) were found to be 500, 50, and 5 fg, respectively, and the detection limit for the pathogen-to-host ratio was approximately 1:10,000 (wt/wt).

Impact of Rhizosphere Competence of Biocontrol Agents upon Diseases Suppression and Plant Growth Promotion

  • Park, Chang-Seuk-
    • Proceedings of the Korean Society of Plant Pathology Conference
    • /
    • 1994.06a
    • /
    • pp.27-49
    • /
    • 1994
  • Root colonization of biocontrol agents via seed treatment was investigated and a compatible combination, Gliocladium virens G872B and Pseudomonas putida Pf3, in colonizing cucumber rhizosphere was confirmed through the study. Much higher number of fungal and bacterial propagules were detected when two isolates were inoculated together. The presence of Pf3 in root system was greatly helpful to G872B to colonize at root tip. The mechanism of this phenomenon is partially elucidated through the results of in vitro experiments and the observations of scanning electron and fluorescence microscope. Addition of Pf3 cells resulted earlier germination of G872B conidia and increased mycelial growth. And the more number of germinated conidia on seed coat, the more vigorous hypal streching and sporulation on the root surface were observed in coinoculated treatment. The propagules of G872B on the cucumber root when they were challenged against the pathogenic Fusarium oxysporum, were even higher than that of G872B treated alone, and the magnitude of such a difference was getting grater toward the root ip and the population of F. oxysporum on the root was reduced by seed inoculation of G872B. The rhizosphere competence was obviously reflected to disease suppression and plant growth promotion that induced by the given isolate. Green house experiments revealed that the combined treatment provided long-term disease suppression with greater rate and the larger amount of fruit yield than single treatments. Through this study the low temperature growing Pseudomonas fluorescens M45 and MC07 were evaluated to apply them to the winter crops in field or plastic film house. In vitro tests reveal that M45 and MC07 inhibited the mycelial growth of Pythium ultimum, Rhizoctona solani and Phytophthora capsici and enhanced growth of cucumber cotyledon in MS agar. This effect was more pronounced when the bacteria were incubated at 14$^{\circ}C$ than at 27$^{\circ}C$. And disease suppression and plant growth promotion in green house were also superior at low temperature condition. Seed treatment of M45 or soil treatment of MC07 brought successful control of damping-off and enhanced seedling growth of cucumber. The combined treatment of two isolates was more effective than any single treatment.

  • PDF