• 제목/요약/키워드: fungal communities

검색결과 83건 처리시간 0.023초

Highlighting the Microbial Community of Kuflu Cheese, an Artisanal Turkish Mold-Ripened Variety, by High-Throughput Sequencing

  • Talha Demirci
    • 한국축산식품학회지
    • /
    • 제44권2호
    • /
    • pp.390-407
    • /
    • 2024
  • Kuflu cheese, a popular variety of traditional Turkish mold-ripened cheeses, is characterized by its semi-hard texture and blue-green color. It is important to elucidate the microbiota of Kuflu cheese produced from raw milk to standardize and sustain its sensory properties. This study aimed to examine the bacteria, yeasts, and filamentous mold communities in Kuflu cheese using high-throughput amplicon sequencing based on 16S and ITS2 regions. Lactococcus, Streptococcus, and Staphylococcus were the most dominant bacterial genera while Bifidobacterium genus was found to be remarkably high in some Kuflu cheese samples. Penicillium genus dominated the filamentous mold biota while the yeasts with the highest relative abundances were detected as Debaryomyces, Pichia, and Candida. The genera Virgibacillus and Paraliobacillus, which were not previously reported for mold-ripened cheeses, were detected at high relative abundances in some Kuflu cheese samples. None of the genera that include important food pathogens like Salmonella, Campylobacter, Listeria were detected in the samples. This is the first experiment in which the microbiota of Kuflu cheeses were evaluated with a metagenomic approach. This study provided an opportunity to evaluate Kuflu cheese, which was previously examined for fungal composition, in terms of both pathogenic and beneficial bacteria.

토마토에 염류 내성을 유도하는 바실러스 균주 처리 후 근권 미생물 군집 구조 연구 (Assessment of Rhizosphere Microbial Community Structure in Tomato Plants after Inoculation of Bacillus Species for Inducing Tolerance to Salinity)

  • 유성제;이신애;원항연;송재경;상미경
    • 한국환경농학회지
    • /
    • 제40권1호
    • /
    • pp.49-59
    • /
    • 2021
  • BACKGROUND: Soil salinity causes reduction of crop productivity. Rhizosphere microbes have metabolic capabilities and ability to adaptation of plants to biotic and abiotic stresses. Plant growth-promoting bacteria (PGPB) could play a role as elicitors for inducing tolerance to stresses in plants by affecting resident microorganism in soil. This study was conducted to demonstrate the effect of selected strains on rhizosphere microbial community under salinity stress. METHODS AND RESULTS: The experiments were conducted in tomato plants in pots containing field soil. Bacterial suspension was inoculated into three-week-old tomato plants, one week after inoculation, and -1,000 kPa-balanced salinity stress was imposed. The physiological and biochemical attributes of plant under salt stress were monitored by evaluating pigment, malondialdehyde (MDA), proline, soil pH, electrical conductivity (EC) and ion concentrations. To demonstrate the effect of selected Bacillus strains on rhizosphere microbial community, soil microbial diversity and abundance were evaluated with Illumina MiSeq sequencing, and primer sets of 341F/805R and ITS3/ITS4 were used for bacterial and fungal communities, respectively. As a result, when the bacterial strains were inoculated and then salinity stress was imposed, the inoculation decreases the stress susceptibility including reduction in lipid peroxidation, enhanced pigmentation and proline accumulation which subsequently resulted in better plant growth. However, bacterial inoculations did not affect diversity (observed OTUs, ACE, Chao1 and Shannon) and structure (principle coordinate analysis) of microbial communities under salinity stress. Furthermore, relative abundance in microbial communities had no significant difference between bacterial treated- and untreated-soils under salinity stress. CONCLUSION: Inoculation of Bacillus strains could affect plant responses and soil pH of tomato plants under salinity stress, whereas microbial diversity and abundance had no significant difference by the bacterial treatments. These findings demonstrated that Bacillus strains could alleviate plant's salinity damages by regulating pigments, proline, and MDA contents without significant changes of microbial community in tomato plants, and can be used as effective biostimulators against salinity stress for sustainable agriculture.

Diversity of Endophytic Fungi from Different Verticillium-Wilt-Resistant Gossypium hirsutum and Evaluation of Antifungal Activity Against Verticillium dahliae In Vitro

  • Li, Zhi-Fang;Wang, Ling-Fei;Feng, Zi-Li;Zhao, Li-Hong;Shi, Yong-Qiang;Zhu, He-Qin
    • Journal of Microbiology and Biotechnology
    • /
    • 제24권9호
    • /
    • pp.1149-1161
    • /
    • 2014
  • Cotton plants were sampled and ranked according to their resistance to Verticillium wilt. In total, 642 endophytic fungi isolates representing 27 genera were recovered from Gossypium hirsutum root, stem, and leaf tissues, but were not uniformly distributed. More endophytic fungi appeared in the leaf (391) compared with the root (140) and stem (111) sections. However, no significant difference in the abundance of isolated endophytes was found among resistant cotton varieties. Alternaria exhibited the highest colonization frequency (7.9%), followed by Acremonium (6.6%) and Penicillium (4.8%). Unlike tolerant varieties, resistant and susceptible ones had similar endophytic fungal population compositions. In three Verticillium-wilt-resistant cotton varieties, fungal endophytes from the genus Alternaria were most frequently isolated, followed by Gibberella and Penicillium. The maximum concentration of dominant endophytic fungi was observed in leaf tissues (0.1797). The evenness of stem tissue endophytic communities (0.702) was comparatively more uniform than the other two tissues. Eighty endophytic fungi selected from 27 genera were evaluated for their inhibition activity against highly virulent Verticillium dahliae isolate Vd080 in vitro. Thirty-nine isolates exhibited fungistasis against the pathogen at varying degrees. Seven species, having high growth inhibition rates (${\geq}75%$), exhibited strong antifungal activity against V. dahliae. The antifungal activity of both volatile and nonvolatile metabolites was also investigated. The nonvolatile substances produced by CEF-818 (Penicillium simplicissimum), CEF-325 (Fusarium solani), CEF-714 (Leptosphaeria sp.), and CEF-642 (Talaromyces flavus) completely inhibited V. dahliae growth. These findings deepen our understanding of cotton-endophyte interactions and provide a platform for screening G. hirsutum endophytes with biocontrol potential.

적송 (Pinus densiflora) 림내 송이(Tricholoma matsutake) 발생지와 미발생지의 토양 균류의 수직 분포 (Microfungal flora of Tricholoma matsutake producing and nonproducing sites in the forest of Pinus densiflora)

  • 송현순;민경희
    • 한국균학회지
    • /
    • 제19권2호
    • /
    • pp.109-119
    • /
    • 1991
  • 송이 (Tricholoma matsutake) 생산의 대표적인 지역으로 알려진 강원도 양양 지역과 명주 지역을 선택하여 송이 발생지와 미발생지의 미세균류를 분리 동정하였으며 수직분포를 조사하였다. 진균의 선별방법으로 희석법, $42^{\circ}C$에서 48시간 배양 후 $37^{\circ}C$로 배양하는 방법, $70^{\circ}C$에서 15분간 열처리 방법, 그리고 ethanol처리 방법으로 토양의 수직적 분포를 파악하였다. $42^{\circ}C$배양법에서는 두 장소에서 분리된 토양균은 7속 18종이 분리되었으며, 송이 발생지에서는 Aspergillus fumigatus, A. ochraceus, A. terreus, Acremonium sp., Penicillium frequentans, Talarom-yces stipitatus가 분리되었으며, 송이 미발생지에서는 Aspergillus fumigatus, Penicillium lilacinum, P. oxalicum, Westerdykella multispora가 우점종으로 나타났다. $70^{\circ}C$열처리 방법으로 분리한 경우 7속20종이 분리되었으며, 송이발생지에서는 Aspergillus fumigatus, Mucor sp. 가 우점적으로 나타났으며, 송이 미발생지에서는 A. iumigatus, Atternaria alter-nate, Mucor sp., Neurospora sitophita가 우점종으로 나타났다. Ethanol처리 방법으로 분리한 경우는 1속 1종이 분리되었으며, 송이 발생지와 미발생지에 관계없이 우점종은 Mortierella sp.로 분류되었다. 이들 분리된 토양균은 전체균의 수와 우점종균수 그리고 나타나는 종의 빈도수는 그 수직적 분포에 있어서 상층에서 하층으로 내려갈수록 감소하였다.

  • PDF

Effects of Long-Term Fertilization on Microbial Diversity in Upland Soils Estimated by Biolog Ecoplate and DGGE

  • An, Nan-Hee;Lee, Sang-Min;Cho, Jung-Rai;Lee, Byung-Mo;Shin, Jae-Hun;Ok, Jung-Hun;Kim, Seok-Cheol
    • 한국토양비료학회지
    • /
    • 제47권6호
    • /
    • pp.451-456
    • /
    • 2014
  • Organic amendment practices can influence diversity and activities of soil microorganisms. There is a need to investigate this impact compared with other types of materials. This study was carried out to evaluate the long term effects of chemical and organic fertilizer on soil microbial community in upland field. During the last 11 years green manure, rice straw compost, rapeseed cake, pig mature compost, NPK, and NPK + pig mature compost were treated in upland soil. Organic fertilizer treatment found with high bacterial colony forming units (CFUs) as compared to chemical and without fertilizer treatment. There was no significant difference in the actinomycetes and fungal population. The average well color development (AWCD) value was the highest in green manure and, the lowest in without fertilizer treatment. Analyses based on the denaturing gradient gel electrophoresis (DGGE) profile showed that rice straw compost and pig mature compost had a similar banding pattern while rapeseed cake, NPK, NPK + pig mature compost and without fertilizer treatment were clustered in another cluster and clearly distinguished from green manure treatment. Bacterial diversity can be highly increased by the application of organic fertilizer while chemical fertilizer had less impact. It can be concluded that green manure had a beneficial impact on soil microbial flora, while, the use of chemical fertilizer could affect the soil bacterial communities adversely.

폐광산 지역의 근권 토양에 분포하는 수지상균근균 포자의 다양성 (Spore Diversity of Arbuscular Mycorrhizal Fungi in a Post-mining Area in Korea)

  • 박혁;이은화;가강현;엄안흠
    • 한국균학회지
    • /
    • 제44권2호
    • /
    • pp.82-86
    • /
    • 2016
  • 충북 제천의 폐광산 지역의 근권 토양과 인근 일반 산림 지역의 근권 토양을 수집하여 토양 내의 수지상균근균(AMF)의 다양성 및 군집 구조를 확인하였다. 폐광산 지역의 근권 토양은 Acaulospora mellea, 일반 산림 지역의 토양은 Ambispora leptoticha가 우점하는 것을 확인하였다. 군집 구조를 분석한 결과, 폐광산 지역의 근권 토양에서 일반 산림 지역의 근권 토양보다 AMF 포자 수가 많은 것을 확인하였고, 두 지역의 종 다양성 지수에는 유의미한 차이가 존재하지 않았으나 일반 산림 토양의 군집 내 유사도 지수가 폐광산 지역의 근권 토양보다 유의미한 수준으로 높게 나타나는 것을 알 수 있었다. 따라서 본 연구는 교란의 차이에 의해 AMF의 군집이 달라질 수 있음을 보여준다.

Analysis of Bacterial Diversity and Community Structure in Forest Soils Contaminated with Fuel Hydrocarbon

  • Ahn Jae-Hyung;Kim Mi-Soon;Kim Min-Cheol;Lim Jong-Sung;Lee Goon-Taek;Yun Jun-Ki;Kim Tae-Sung;Kim Tae-San;Ka Jong-Ok
    • Journal of Microbiology and Biotechnology
    • /
    • 제16권5호
    • /
    • pp.704-715
    • /
    • 2006
  • Oil spill was found in 1999 from a diesel storage facility located near the top of Baekun Mountain in Uiwang City. Application of bioremediation techniques was very relevant in removing oil spills in this site, because the geological condition was not amenable for other onsite remediation techniques. For efficient bioremediation, bacterial communities of the contaminated site and the uncontaminated control site were compared using both molecular and cultivation techniques. Soil bacterial populations were observed to be stimulated to grow in the soils contaminated with diesel hydrocarbon, whereas fungal and actinomycetes populations were decreased by diesel contamination. Most of the dieseldegrading bacteria isolated from contaminated forest soils were strains of Pseudomonas, Ralstonia, and Rhodococcus species. Denaturing gradient gel electrophoresis (DGGE) analysis revealed that the profiles were different among the three contaminated sites, whereas those of the control sites were identical to each other. Analysis of 16S rDNA sequences of dominant isolates and clones showed that the bacterial community was less diverse in the oil-contaminated site than at the control site. Sequence analysis of the alkane hydroxylase genes cloned from soil microbial DNAs indicated that their diversity and distribution were different between the contaminated site and the control site. The results indicated that diesel contamination exerted a strong selection on the indigenous microbial community in the contaminated site, leading to predominance of well-adapted microorganisms in concurrence with decrease of microbial diversity.

Soil Microbial Community Assessment for the Rhizosphere Soil of Herbicide Resistant Genetically Modified Chinese Cabbage

  • Sohn, Soo-In;Oh, Young-Ju;Ahn, Byung-Ohg;Ryu, Tae-Hoon;Cho, Hyun-Suk;Park, Jong-Sug;Lee, Ki-Jong;Oh, Sung-Dug;Lee, Jang-Yong
    • 한국환경농학회지
    • /
    • 제31권1호
    • /
    • pp.52-59
    • /
    • 2012
  • BACKGROUND: Cultivation of genetically modified(GM) crops rapidly has increased in the global agricultural area. Among those, herbicide resistant GM crops are reported to have occupied 89.3 million hectares in 2010. However, cultivation of GM crops in the field evoked the concern of the possibility of gene transfer from transgenic plant into soil microorganisms. In our present study, we have assessed the effects of herbicide-resistant GM Chinese cabbage on the surrounding soil microbial community. METHODS AND RESULTS: The effects of a herbicide-resistant genetically modified (GM) Chinese cabbage on the soil microbial community in its field of growth were assessed using a conventional culture technique and also culture-independent molecular methods. Three replicate field plots were planted with a single GM and four non-GM Chinese cabbages (these included a non-GM counterpart). The soils around these plants were compared using colony counting, denaturing gradient gel electrophoresis and a species diversity index assessment during the growing periods. The bacterial, fungal and actinomycetes population densities of the GM Chinese cabbage soils were found to be within the range of those of the non-GM Chinese cabbage soils. The DGGE banding patterns of the GM and non-GM soils were also similar, suggesting that the bacterial community structures were stable within a given month and were unaffected by the presence of a GM plant. The similarities of the bacterial species diversity indices were consistent with this finding. CONCLUSION: These results indicate that soil microbial communities are unaffected by the cultivation of herbicide-resistant GM Chinese cabbage within the experimental time frame.

충남 오서산에 분포하는 소나무와 일본잎갈나무에서 분리한 내생균의 다양성 (Diversity of Endophytic Fungi Isolated from Pinus densiflora and Larix kaempferi in Mt. Oser, Korea)

  • 어주경;김창균;이향범;엄안흠
    • 한국균학회지
    • /
    • 제41권3호
    • /
    • pp.137-141
    • /
    • 2013
  • 오서산의 소나무와 일본잎갈나무 두 수종의 침엽에서 내생균의 다양성을 분석하였다. 총 13개체의 숙수식물에서 채집한 침엽을 표면살균하여 분리한 균주들은 형태적인 특징과 rDNA 유전자(ITS 부위) 분석을 수행하였다. 그 결과 총 37개의 균주가 분리되었으며 이들은 17개의 분류군으로 묶을 수 있었다. 그 중 59%는 Leotiomycetes에 속하였으며, 30%는 Sordariomyetes에, 8%는 Dothideomycetes에 속하였으며, 3%는 Agaricomycetes에 속하는 균으로 판명 되었다. 이러한 결과들은 선행연구의 결과들과 매우 유사하였으며 소나무에서보다 일본잎갈나무에서 내생균의 종 다양성이 높게 나타났다. 특히 Lophodermium 속에 속하는 분류군들이 내생균의 다양성에서 주요한 균류로 확인되었으며, 한국에 분포하는 Lophodermium 속 내 종들에 대한 심도 있는 연구가 요구된다.

Rumen fermentation and microbial diversity of sheep fed a high-concentrate diet supplemented with hydroethanolic extract of walnut green husks

  • Huan Wei;Jiancheng Liu;Mengjian Liu;Huiling Zhang;Yong Chen
    • Animal Bioscience
    • /
    • 제37권4호
    • /
    • pp.655-667
    • /
    • 2024
  • Objective: This study aimed to assess the impact of a hydroethanolic extract of walnut green husks (WGH) on rumen fermentation and the diversity of bacteria, methanogenic archaea, and fungi in sheep fed a high-concentrate diet. Methods: Five healthy small-tailed Han ewes with permanent rumen fistula were selected and housed in individual pens. This study adopted a self-controlled and crossover design with a control period and an experimental period. During the control period, the animals were fed a basal diet (with a ratio of concentrate to roughage of 65:35), while during the treatment period, the animals were fed the basal diet supplemented with 0.5% hydroethanolic extract of WGH. Fermentation parameters, digestive enzyme activities, and microbial diversity in rumen fluid were analyzed. Results: Supplementation of hydroethanolic extract of WGH had no significant effect on feed intake, concentrations of total volatile fatty acids, isovalerate, ammonia nitrogen, and microbial protein (p>0.05). However, the ruminal pH, concentrations of acetate, butyrate and isobutyrate, the ratio of acetate to propionate, protozoa count, and the activities of filter paper cellulase and cellobiase were significantly increased (p<0.05), while concentrations of propionate and valerate were significantly decreased (p<0.05). Moreover, 16S rRNA gene sequencing revealed that the relative abundance of rumen bacteria Christensenellaceae R7 group, Saccharofermentans, and Ruminococcaceae NK4A214 group were significantly increased, while Ruminococcus gauvreauii group, Prevotella 7 were significantly decreased (p<0.05). The relative abundance of the fungus Pseudomonas significantly increased, while Basidiomycota, Fusarium, and Alternaria significantly decreased (p<0.05). However, there was no significant change in the community structure of methanogenic archaea. Conclusion: Supplementation of hydroethanolic extract of WGH to a high-concentrate diet improved the ruminal fermentation, altered the structure of ruminal bacterial and fungal communities, and exhibited beneficial effects in alleviating subacute rumen acidosis of sheep.