• Title/Summary/Keyword: fungal communities

Search Result 83, Processing Time 0.028 seconds

Morphological and Molecular Characterization of the Newly Reported Penicillium pimiteouiense from Field Soil in Korea

  • Mahesh Adhikari;Hyun Seung Kim;Hyun Seung Kim;Ki Young Kim;In Kyu Lee;Eun Jeong Byeon;Ji Min Woo;Hyang Burm Lee;Youn Su Lee
    • The Korean Journal of Mycology
    • /
    • v.50 no.3
    • /
    • pp.205-215
    • /
    • 2022
  • Penicillium pimiteouiense was discovered in South Korea during an investigation of fungal communities in soil collected from the Gyeongsangbuk-do province. In this study, we performed molecular analysis of this fungal isolate using internal transcribed spacer rDNA, β-tubulin, and Calmodulin gene sequences. We also performed morphological analysis using five agar media, potato dextrose, oatmeal, malt extract, czapek yeast extract, and yeast extract sucrose. In this study, the molecular and morphological analyses of P. pimiteouiense with detailed descriptions and figures has been carried out.

Influence of Companion Planting on Microbial Compositions and Their Symbiotic Network in Pepper Continuous Cropping Soil

  • Jingxia Gao;Fengbao Zhang
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.6
    • /
    • pp.760-770
    • /
    • 2023
  • Continuous cropping obstacles have become a serious factor restricting sustainable development in modern agriculture, while companion planting is one of the most common and effective methods for solving this problem. Here, we monitored the effects of companion planting on soil fertility and the microbial community distribution pattern in pepper monoculture and companion plantings. Soil microbial communities were analyzed using high-throughput sequencing technology. Companion plants included garlic (T1), oat (T2), cabbage (T3), celery (T4), and white clover (T5). The results showed that compared with the monoculture system, companion planting significantly increased the activities of soil urease (except for T5) and sucrase, but decreased catalase activity. In addition, T2 significantly improved microbial diversity (Shannon index) while T1 resulted in a decrease of bacterial OTUs and an increase of fungal OTUs. Companion planting also significantly changed soil microbial community structures and compositions. Correlation analysis showed that soil enzyme activities were closely correlated with bacterial and fungal community structures. Moreover, the companion system weakened the complexity of microbial networks. These findings indicated that companion plants can provide nutrition to microbes and weaken the competition among them, which offers a theoretical basis and data for further research into methods for reducing continuous cropping obstacles in agriculture.

PCR-DGGE Analysis of the Microbial Communities in Three Different Chinese "Baiyunbian" Liquor Fermentation Starters

  • Xiong, Xiaomao;Hu, Yuanliang;Yan, Nanfeng;Huang, Yingna;Peng, Nan;Liang, Yunxiang;Zhao, Shumiao
    • Journal of Microbiology and Biotechnology
    • /
    • v.24 no.8
    • /
    • pp.1088-1095
    • /
    • 2014
  • A systematic investigation was performed on the bacterial, Bacillus, fungal, and yeast communities of the three types of Daqu (mechanically prepared, manually prepared, and mixed prepared) used in Baiyunbian Company by reconditioning PCR-denaturing gradient gel electrophoresis (PCR-DGGE). The DGGE results showed that the microbes in the three types of Daqu were mainly thermotolerant and thermophilic microbes, and the most dominant bacterial species were Bacillus and Virgibacillus, followed by Lactobacillus and Trichococcus. Furthermore, the dominant fungi were found to be molds, such as Rasamsonia, Penicillium, Aspergillus, and Monascus, and the dominant yeasts were Saccharomyces cerevisiae, Saccharomycopsis fibuligera, Pichia anomala, and Debaryomyces hansenii. In general, the three types of Daqu showed slight differences in microbial communities, and the Shannon indexes (H') of the manually prepared and mechanically prepared Daqu were similar. The results suggest that mechanically prepared Daqu can replace manually prepared Daqu in liquor production, and this research provides useful information for liquor production and process improvement.

The effect of Glomus intraradices on the physiological properties of Panax ginseng and on rhizospheric microbial diversity

  • Tian, Lei;Shi, Shaohua;Ma, Lina;Zhou, Xue;Luo, Shasha;Zhang, Jianfeng;Lu, Baohui;Tian, Chunjie
    • Journal of Ginseng Research
    • /
    • v.43 no.1
    • /
    • pp.77-85
    • /
    • 2019
  • Background: Glomus intraradices is a species of arbuscular mycorrhizal fungi that, as an obligate endomycorrhiza, can form mutually beneficial associations with plants. Panax ginseng is a popular traditional Chinese medicine; however, problems associated with ginseng planting, such as pesticide residues, reduce the ginseng quality. Methods: In this experiment, we studied the effect of inoculating G. intraradices on several physiological properties and microbial communities of ginseng. UV-Visible Spectrum method was used to detect physical properties. Denaturing gradient gel electrophoresis method was used to analyze microbial communities. Results: The results indicated that inoculation with G. intraradices can improve the colonization rate of lateral ginseng roots, increase the levels of monomeric and total ginsenosides, and improve root activity as well as polyphenol oxidase and catalase activities. We also studied the bacterial and fungal communities in ginseng rhizospheric soil. In our study, G. intraradices inoculation improved the abundance and Shannon diversity of bacteria, whereas fungi showed a reciprocal effect. Furthermore, we found that G. intraradices inoculation might increase some beneficial bacterial species and decreased pathogenic fungi in rhizospheric soil of ginseng. Conclusion: Our results showed that G. intraradices can benefit ginseng planting which may have some instructive and practical significance for planting ginseng in farmland.

Diversity of Ectomycorrhizal Fungi of Pinus densiflora Siebold et Zucc. Seedlings in a Disturbed Forest on Mt. Songni

  • Sim, Mi-Yeong;Eom, Ahn-Heum
    • Journal of Ecology and Environment
    • /
    • v.32 no.1
    • /
    • pp.13-18
    • /
    • 2009
  • This study was conducted to investigate ectomycorrhizal (ECM) diversity on Pinus densiflora seedlings in a disturbed pine forest. Pine seedlings less than one year old were collected from disturbed and undisturbed sites in the Mt. Songni region. The belowground ECM fungal communities colonizing P. densiflora seedlings were studied using morphotyping and DNA sequencing. The relative abundance of ECM root tips was significantly higher in the undisturbed sites than in the disturbed sites, and the ECM species diversity was lower in the disturbed sites than in the undisturbed sites. In addition, the ECM community composition was significantly different in the disturbed and undisturbed forest sites.

Effects of Organic Farming on Communities of Arbuscular Mycorrhizal Fungi

  • Lee, Si-Woo;Lee, Eun-Hwa;Eom, Ahn-Heum
    • Mycobiology
    • /
    • v.36 no.1
    • /
    • pp.19-23
    • /
    • 2008
  • Red pepper (Capsicum annum L.) roots and soils representing different agricultural management practices such as conventional (CON), no-chemical (NOC), and organic farming systems (ORG) were collected from 32 farm field sites in Kyunggi, Korea to investigate the effects of these agricultural practices on arbuscular mycorrhizal (AM) symbiosis. ORG inoculum significantly increased plant growth compared to inoculum from CON and NOC. A community analysis of AM fungi (AMF) using morphological features of spores revealed that AMF spore abundance and species diversity were significantly higher in ORG than in CON. Additionally, a community analysis of AMF colonizing roots using a molecular technique revealed higher AMF diversity in ORG than in CON. These results suggest that agricultural practices significantly influence AM fungal community structure and mycorrhizal inoculum potential.

Salinity affects microbial community structure in saemangeum reclaimed land

  • Kim, Kiyoon;Samaddar, Sandipan;Ahmed, Shamim;Roy, Choudhury Aritra;Sa, Tongmin
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.364-364
    • /
    • 2017
  • Saemangeum reclaimed land is a part of Saemangeum Development Project. Most of the persistent problems of Saemangeum reclaimed land remain to be related to soil salinity. Soil salinity is a major abiotic factor related to microbial community structure and also fungi have been reported to be more sensitive to salinity stress than bacteria. The aim of this study was conducted to investigate the effect of soil salinity levels on the microbial communities in Saemangeum reclaimed land using 454 pyrosequencing analysis. Soil samples was collected from 12 sites of in Saemangeum reclaimed land. For pyrosequencing, 27F/518R (bacteria) and ITS3/ITS4 (fungi) primers were used containing the Roche 454 pyrosequencing adaptor-key-linker (underlined) and unique barcodes (X). Pyrosequencing was performed by Chun's Lab (Seoul, Korea) using the standard shotgun sequencing reagents and a 454 GS FLX Titanium sequencing System (Roche, Inc.). In the soil samples, Proteobacteria (bacteria) and Ascomycota (fungi) shows the highest relative abundance in all the soil sample sites. Proteobacteria, Bacteroidetes, Plantomycetes, Gemmatimonadetes and Parcubacteria were shown to have significantly higher abundance in high salinity level soils than low salinity level soils, while Acidobacteria and Nitrospirae has significantly higher relative abundance in low salinity level soils. The abundance of fungal, Ascomycota has the highest relative abundance in soil samples, followed by Basidiomycota, Chlorophyta, Zygomycota and Chytridiomycota. Basidiomycota, Zygomycota, Glomeromycota and Cerozoa were show significantly higher relative abundance in low salinity level soils. The principal coordinate analysis (PCoA) and correlation analysis shown to salinity-related soil parameters such as ECe, Na+, SAR and EPS were affected to bacterial and fungal community structure. Proteobacteria, Bacteroidetes, Plantomycetes exhibited significantly positive correlation with soil salinity, while Acidobacteria exhibited significantly negative correlation. In the case of fungal community, Basidiomycota and Zygomycota were seen show significantly negative correlation with salinity related soil parameters. These results suggest that provide understanding effect of soil salinity on microbial community structure and correlation of microbial community with soil parameters in Saemangeum reclaimed land.

  • PDF

Effects of cultivation ages and modes on microbial diversity in the rhizosphere soil of Panax ginseng

  • Xiao, Chunping;Yang, Limin;Zhang, Lianxue;Liu, Cuijing;Han, Mei
    • Journal of Ginseng Research
    • /
    • v.40 no.1
    • /
    • pp.28-37
    • /
    • 2016
  • Background: Panax ginseng cannot be cultivated on the same land consecutively for an extended period, and the underlying mechanism regarding microorganisms is still being explored. Methods: Polymerase chain reaction and denaturing gradient gel electrophoresis (PCR-DGGE) and BIO-LOG methods were used to evaluate the microbial genetic and functional diversity associated with the P. ginseng rhizosphere soil in various cultivation ages and modes. Results: The analysis of microbial diversity using PCR-DGGE showed that microbial communities were significantly variable in composition, of which six bacterial phyla and seven fungal classes were detected in P. ginseng soil. Among them, Proteobacteria and Hypocreales dominated. Fusarium oxysporum, a soilborne pathogen, was found in all P. ginseng soil samples except R0. The results from functional diversity suggested that the microbial metabolic diversity of fallow soil abandoned in 2003was the maximum and transplanted soil was higher than direct-seeding soil and the forest soil uncultivated P. ginseng, whereas the increase in cultivation ages in the same mode led to decreases in microbial diversity in P. ginseng soil. Carbohydrates, amino acids, and polymers were the main carbon sources utilized. Furthermore, the microbial diversity index and multivariate comparisons indicated that the augmentation of P. ginseng cultivation ages resulted in decreased bacterial diversity and increased fungal diversity, whereas microbial diversity was improved strikingly in transplanted soil and fallow soil abandoned for at least one decade. Conclusion: The key factors for discontinuous P. ginseng cultivation were the lack of balance in rhizosphere microbial communities and the outbreak of soilborne diseases caused by the accumulation of its root exudates.

Comparison of Soil Microbial Communities to Different Practice for Strawberry Cultivation in Controlled Horticultural Land (시설 딸기의 재배방법에 따른 토양 미생물군집 비교)

  • Min, Se-Gyu;Park, Su-Seon;Lee, Young-Han
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.3
    • /
    • pp.479-484
    • /
    • 2011
  • Fatty acid methyl ester (FAME) profiles were used to describe differences in soil microbial communities influenced by conventional farming system (CFS), conventional farming system without pesticides (CFSWP), and organic farming system (OFS) for strawberry cultivation in controlled horticultural land. In comparison to the CFS soils, the average soil microbial biomasses of in the OFS soils were approximately 1.2 times for total FAMEs ($195nmol\;g^{-1}$), 1.4 times for total bacteria ($58nmol\;g^{-1}$), 1.5 times for Gram-negative bacteria ($27.3nmol\;g^{-1}$), 1.2 times for Gram-positive bacteria ($26.1nmol\;g^{-1}$), and 1.5 times for actinomycetes ($2.8nmol\;g^{-1}$). The microbial communities of total bacteria (p<0.05) and Gram-negative bacteria (p<0.05) in the OFS and CFSWP soils were significantly higher larger than those in the CFS soils. However, fungal structure was significantly greater in CFS than in OFS and CFSWP (p<0.05). In principal component analyses of soil microbial communities, our findings suggest that actinomycetes should be considered as potential factor responsible for the clear microbial community differentiation observed between OFS and CFS in controlled horticultural land.

Arbuscular Mycorrhizal Fungal Communities in the Roots of Maize Lines Contrasting for Al Tolerance Grown in Limed and Non-Limed Brazilian Oxisoil

  • Gomes, Eliane A.;Oliveira, Christiane A.;Lana, Ubiraci G. P.;Noda, Roberto W.;Marriel, Ivanildo E.;de Souza, Francisco A.
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.7
    • /
    • pp.978-987
    • /
    • 2015
  • Aluminum (Al) toxicity is one of the greatest limitations to agriculture in acid soils, particularly in tropical regions. Arbuscular mycorrhizal fungi (AMF) can supply plants with nutrients and give protection against Al toxicity. The aim of this work was to evaluate the effects of soil liming (i.e., reducing Al saturation) on the AMF community composition and structure in the roots of maize lines contrasting for Al tolerance. To this end, we constructed four 18S rDNA cloning libraries from L3 (Al tolerant) and L22 (Al sensitive) maize lines grown in limed and non-limed soils. A total of 790 clones were sequenced, 69% belonging to the Glomeromycota phylum. The remaining sequences were from Ascomycota, which were more prominent in the limed soil, mainly in the L3 line. The most abundant AM fungal clones were related to the family Glomeraceae represented by the genera uncultured Glomus followed by Rhizophagus and Funneliformis. However, the most abundant operational taxonomic units with 27% of the Glomeromycota clones was affiliated to genus Racocetra. This genus was present in all the four libraries, but it was predominant in the non-limed soils, suggesting that Racocetra is tolerant to Al toxicity. Similarly, Acaulospora and Rhizophagus were also present mostly in both lines in non-limed soils. The community richness of AMF in the non-limed soils was higher than the limed soil for both lines. The results suggest that the soil Al saturation was the parameter that mostly influences the AMF species composition in the soils in this study.