• Title/Summary/Keyword: fungal

Search Result 3,147, Processing Time 0.209 seconds

Mosquito Control Using Entomopathogenic Fungi (곤충병원성 곰팡이를 이용한 모기 방제)

  • Choi, Kwang Shik;Jung, Hee-Young
    • The Korean Journal of Mycology
    • /
    • v.43 no.2
    • /
    • pp.77-87
    • /
    • 2015
  • Insects are commonly infected by fungal diseases and are mostly susceptible to them. Increasing levels of insecticide resistance has recently become an issue for control programs; thus, research has focused on mosquito control using entomopathogenic fungi, including fungal pathogens such as Beauveria bassiana, Metarhizium anisopliae, and Lagenidium giganteum. Review discusses entomopathogenic fungi related to control programs for mosquito transmitted vector-borne diseases such as dengue, filariasis, malaria, and yellow fever, and how to use entomopathogenic fungi for mosquito control.

Detection of Infectious Fungal Diseases of Frogs Inhabiting in Korea

  • Kim, Suk;Eom, Ahn-Heum;Park, Dae-Sik;Ra, Nam-Yong
    • Mycobiology
    • /
    • v.36 no.1
    • /
    • pp.10-12
    • /
    • 2008
  • In recent years, there has been a rapid decrease in amphibian populations worldwide, and infectious diseases have been associated with this decline. Diseased frogs inhabiting Korea were collected from fields, and the diseases were identified by morphological and molecular analyses. Two fungal diseases-saprolegniasis and chromomycosis-were detected in the frogs. Saprolegniasis caused by Saprolegnia spp. was found in Rana plancyi chosenica from Gangwon-do and Rana huanrenensis from Chungbuk. Chromomycosis, which is caused by infection with Cladosporium cladosporioides, was detected in Rana catesbeiana from Busan.

Entomopathogenicity of Simplicillium lanosoniveum Isolated in Korea

  • Lim, Sung Yeol;Lee, Sehee;Kong, Hyun Gi;Lee, Jungkwan
    • Mycobiology
    • /
    • v.42 no.4
    • /
    • pp.317-321
    • /
    • 2014
  • Fruiting bodies similar to those of the ascomycete fungi Podostroma cornu-damae and Cordyceps militaris were collected from Mt. Seunghak in Busan, Korea on August 21, 2012. The fruiting bodies were cylindrical, with tapered ends and golden red in color. The fruiting bodies contained abundant conidiophores bearing single-celled conidia, but no perithecia or asci. Pure culture of the fungal isolates was obtained through single-spore isolation. Analyses of morphological characteristics, including conidia shape, and phylogenetic traits, using internal transcribed spacer sequences, showed that these isolates belonged to the species Simplicillium lanosoniveum. Although this fungal species is known to be mycoparasitic, the isolates obtained in this study were unable to infect fungi. However, silkworms (Bombyx mori) inoculated with the fungal isolates died during the larval or pupal stages, as has been shown for the strongly entomopathogenic fungus Beauveria bassiana. This study is the first report of the entomopathogenicity of S. lanosoniveum and indicates its potential for use in biological control of insects.

Analysis of Fungal Communities on Ulleungdo and Dokdo Islands

  • Nam, Yoon-Jong;Kim, Hyun;Shin, Yong-Gyo;Lee, Jin-Hyung;Kim, Jong-Guk
    • 한국균학회소식:학술대회논문집
    • /
    • 2014.10a
    • /
    • pp.50-50
    • /
    • 2014
  • In this study, we used pyrosequencing method to analysis of soil fungal communities on the Ulleungdo and Dokdo islands. 768 operational taxonomic units (OTUs) were analyzed from the Ulleungdo sample and 640 OTUs and 382 OTUs were analyzed from the Dongdo and Seodo samples, respectively. Compared to the species richness of Ulleungdo and the Dokdo sample, the Ulleungdo sample was higher than in the Dongdo and Seodo samples. Species diversity was much the same. The phylum Basidiomycota was dominant in the Ulleungdo sample, while the phylum Ascomycota was dominant in the Dongdo sample.

  • PDF

Color Difference of Celluloytic Cultural Properties by Fungi (사상균에 의한 지류.섬유질 유물의 색변화)

  • Han, Sung-Hee;Lee, Kyu-Sik;Chung, Young-Jae
    • 보존과학연구
    • /
    • s.17
    • /
    • pp.48-64
    • /
    • 1996
  • We compared the degree of color difference formed by environmental factor(temperature, relative humidity) with fungal growth in order to know how to change the color difference of cellulolutic cultural properties such as Korean papers, cotton, jute and hemp. We concluded, from the result, that the action of fungal growth on celluloytic cultural properties was more hamful than environmental factor. We considered the secretion produced by fungi as the causative agent for stained formation on cellulolytic cultural properties. Alternaria sp. colored allmaterials greyish black, Chaetomium sp. colored cotton and hemp orange, and Penicllium sp. colored cotton, jute and hemp yellowish green. But Trichoderma sp. and Aspergillus sp. didn't show a clear color against each material. It was observed that thymol(120g/$m^3$) was the most effective fungicide to prevent fungal growth.

  • PDF

Downregulation of fungal cytochrome c peroxidase expression by antifungal quinonemethide triterpenoids

  • Seo, Woo-Duck;Lee, Dong-Yeol;Park, Ki Hun;Kim, Jin-Hyo
    • Journal of Applied Biological Chemistry
    • /
    • v.59 no.4
    • /
    • pp.281-284
    • /
    • 2016
  • To handle the development of antifungal drug resistance, the development of new structural modules and new modes of action for antifungals have been highlighted recently. Here, the antifungal activity of quinonemethidal triterpenoids such as celastrol, dihydrocelastrol, iguestein, pristimerin, and tingenone isolated from Tripterygium regelii were identified (MIC $0.269-19.0{\mu}M$). C. glabrata was the most susceptible to quinonemethide among the tested fungi. Furthermore, quinonemethide suppressed cyctochrome c peroxidase expression dramatically, decreasing fungal viability caused by the accumulation of hydrogen peroxide. Thus, cyctochrome c peroxidase downregulation of quinonemethide may be a key mode of action for antifungals.

Protulactones A and B: Two New Polyketides from the Marine-derived Fungus Aspergillus sp. SF-5044

  • Sohn, Jae-Hak;Oh, Hyun-Cheol
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.6
    • /
    • pp.1695-1698
    • /
    • 2010
  • Protulactones A (1) and B (2), two new polyketide-derived fungal metabolites, have been isolated from an EtOAc extract of the marine-derived fungus Aspergillus sp. SF-5044 by various chromatographic methods. The structures of 1 and 2 were mainly determined by analysis of the NMR spectroscopic data and MS data, along with chemical methods such as Mosher method. Protulactones A (1) and B (2) are new members of polyketide-derived secondary metabolites, possessing unique ring systems among the fungal metabolites produced by the genus Aspergillus.

Transcription Factor PU.1 Inhibits Aspergillus fumigatus Infection via Surfactant Protein-D

  • Kim, Sung-Su
    • Biomedical Science Letters
    • /
    • v.24 no.3
    • /
    • pp.175-182
    • /
    • 2018
  • Aspergillosis is a life-threatening disease in individuals with compromised immune systems. Fungal invasion is a highly critical process during host cellular infection. Several papers have reported that transcription factors are responsible for the infection process. To investigate what transcription factors are involved in the process in an effort to inhibit fungal infection into cells, I checked the surfactant protein family and PU.1 transcription factor levels in A549 cells infected with A. fumigatus conidia. PU.1 and surfactant protein-D levels were reduced in cells infected with fungal conidia. I then observed an increase in surfactant protein-D on PU.1-overexpressed cells. Infection of A. fumigatus conidia was decreased in PU.1-overexpressed cells, whereas the suppression of PU.1 did not lead to any changes in cases of A. fumigatus conidia infection. These results indicate that PU.1 inhibits the infection of A. fumigatus conidia via the expression of surfactant protein-D, suggesting that PU.1 is a key transcription factor for protection against A. fumigatus invasion.

First Report and Characterization of Pestalotiopsis ellipsospora Causing Canker on Acanthopanax divaricatus

  • Yun, Yeo Hong;Ahn, Geum Ran;Kim, Seong Hwan
    • Mycobiology
    • /
    • v.43 no.3
    • /
    • pp.366-370
    • /
    • 2015
  • Acanthopanax divaricatus, a member of the Araliaceae family, has been used as an invigorant in traditional Korean medicine. During disease monitoring, a stem with small, irregular, brown lesions was sampled at a farm in Cheonan in 2011. The symptoms seen were sunken cankers and reddish-brown needles on the infected twig. The isolated fungal colonies were whitish, having crenated edges and aerial mycelium on the surface, and with black gregarious fruiting bodies. The reverse plate was creamy white. Conidia were $17{\sim}22{\times}3.5{\sim}4.2{\mu}m$, fusiform, 4-septate, and straight to slightly curved. The nucleotide sequence of the partial translation elongation factor 1 alpha gene of the fungal isolate, shares 99% sequence identity with that of known Pestalotiopsis ellipsospora. Based on the results of the morphological and molecular analyses, the fungal isolate was identified as P. ellipsospora. In Korea, this is the first report of canker on A. divaricatus.

Molecular Identification and Diveristy of Endophytic Fungi Isolated from Pinus densiflora in Boeun, Korea (보은 지역의 소나무(Pinus densiflora)에서 분리한 내생균의 동정과 다양성)

  • Gil, Yi-Jong;Eo, Ju-Kyeong;Eom, Ahn-Heum
    • The Korean Journal of Mycology
    • /
    • v.37 no.2
    • /
    • pp.130-133
    • /
    • 2009
  • The endophytic fungi were isolated from red pine trees (Pinus densiflora) that were distributed in three sites of Chungbuk, Korea. Twenty fungal isolates were isolated from 16 trees and divided into 8 groups by morphological characters. The fungal isolates were identified using the sequences of ITS region of rDNA; Lophodermium complex, Sydowia polyspora, Hymenula sp., Sistotrema brinkmannii, Septoria pini-thunbergii, Earliella sp. Lophodermium spp. were the most frequently found fungal species the across sites and firstly detected from Pinus species in Korea by molecular work.