• Title/Summary/Keyword: fundamental periods of vibration

Search Result 24, Processing Time 0.016 seconds

Site effect microzonation of Babol, Iran

  • Tavakoli, H.R.;Amiri, M. Talebzade;Abdollahzade, G.;Janalizade, A.
    • Geomechanics and Engineering
    • /
    • v.11 no.6
    • /
    • pp.821-845
    • /
    • 2016
  • Extensive researches on distribution of earthquake induced damages in different regions have shown that geological and geotechnical conditions of the local soils significantly influence behavior of alluvial areas under seismic loading. In this article, the site of Babol city which is formed up of saturated fine alluvial soils is considered as a case study. In order to reduce the uncertainties associated with earthquake resistant design of structures in this area (Babol city), the required design parameters have been evaluated with consideration of site's dynamic effects. The utilized methodology combines experimental ground ambient noise analysis, expressed in terms of horizontal to vertical (H/V) spectral ratio, with numerical one-dimensional response analysis of soil columns using DEEPSOIL software. The H/V spectral analysis was performed at 60 points, experimentally, for the region in order to estimate both the fundamental period and its corresponding amplification for the ground vibration. The investigation resulted in amplification ratios that were greater than one in all areas. A good agreement between the proposed ranges of natural periods and alluvial amplification ratios obtained through the analytical model and the experimental microtremor studies verifies the analytical model to provide a good engineering reflection of the subterraneous alluviums.

Along and across-wind vibration control of shear wall-frame buildings with flexible base by using passive dynamic absorbers

  • Ivan F. Huergo;Hugo Hernandez-Barrios;Roberto Gomez-Martinez
    • Wind and Structures
    • /
    • v.38 no.1
    • /
    • pp.15-42
    • /
    • 2024
  • A flexible-base coupled-two-beam (CTB) discrete model with equivalent tuned mass dampers is used to assess the effect of soil-structure interaction (SSI) and different types of lateral resisting systems on the design of passive dynamic absorbers (PDAs) under the action of along-wind and across-wind loads due to vortex shedding. A total of five different PDAs are considered in this study: (1) tuned mass damper (TMD), (2) circular tuned sloshing damper (C-TSD), (3) rectangular tuned sloshing damper (R-TSD), (4) two-way liquid damper (TWLD) and (5) pendulum tuned mass damper (PTMD). By modifying the non-dimensional lateral stiffness ratio, the CTB model can consider lateral deformations varying from those of a flexural cantilever beam to those of a shear cantilever beam. The Monte Carlo simulation method was used to generate along-wind and across-wind loads correlated along the height of a real shear wall-frame building, which has similar fundamental periods of vibration and different modes of lateral deformation in the xz and yz planes, respectively. Ambient vibration tests were conducted on the building to identify its real lateral behavior and thus choose the most suitable parameters for the CTB model. Both alongwind and across-wind responses of the 144-meter-tall building were computed considering four soil types (hard rock, dense soil, stiff soil and soft soil) and a single PDA on its top, that is, 96 time-history analyses were carried out to assess the effect of SSI and lateral resisting system on the PDAs design. Based on the parametric analyses, the response significantly increases as the soil flexibility increases for both type of lateral wind loads, particularly for flexural-type deformations. The results show a great effectiveness of PDAs in controlling across-wind peak displacements and both along-wind and across-wind RMS accelerations, on the contrary, PDAs were ineffective in controlling along-wind peak displacements on all soil types and different kind of lateral deformation. Generally speaking, the maximum possible value of the PDA mass efficiency index increases as the soil flexibility increases, on the contrary, it decreases as the non-dimensional lateral stiffness ratio of the building increases; therefore, there is a significant increase of the vibration control effectiveness of PDAs for lateral flexural-type deformations on soft soils.

Ambient Vibration Testing and System Identification for Tall Buildings (고층건물의 자연 진동실험 및 시스템판별)

  • Cho, Soon-Ho
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.16 no.3
    • /
    • pp.23-33
    • /
    • 2012
  • Dynamic response measurements from natural excitation were carried out for three 18-story office buildings to determine their inherent properties. The beam-column frame system was adopted as a typical structural form, but a core wall was added to resist the lateral force more effectively, resulting in a mixed configuration. To extract modal parameters such as natural frequencies, mode shapes and damping ratios from a series of vibration records at each floor, the most advanced operational system identification methods based on frequency- and time-domain like FDD, pLSCF and SSI were applied. Extracted frequencies and mode shapes from the different identification methods showed a greater consistency for three buildings, however the three lower frequencies extracted were 1.2 to 1.7 times as stiff as those obtained using the initial FE models. Comparing the extracted fundamental periods with those estimated from the code equations and FE analysis, the FE analysis results showed the most flexible behavior, and the most simple equation that considers the building height as the only parameter correlated fairly well with test results. It is recognized that such a discrepancy arises from the fact that the present tests exclude the stiffness decreasing factors like concrete cracking, while the FE models ignore the stiffness increasing factors, such as the contribution of non-structural elements and the actual material properties used.

Conditional mean spectrum for Bucharest

  • Vacareanu, Radu;Iancovici, Mihail;Pavel, Florin
    • Earthquakes and Structures
    • /
    • v.7 no.2
    • /
    • pp.141-157
    • /
    • 2014
  • The Conditional Mean Spectrum represents a powerful link between the seismic hazard information and the selection of strong ground motion records at a particular site. The scope of the paper is to apply for the city of Bucharest for the first time the method to obtain the Conditional Mean Spectrum (CMS) presented by Baker (2011) and to select, on the basis of the CMS, a suite of strong ground motions for performing elastic and inelastic dynamic analyses of buildings and structures with fundamental periods of vibration in the vicinity of 1.0 s. The major seismic hazard for Bucharest and for most of Southern and Eastern Romania is dominated by the Vrancea subcrustal seismic source. The ground motion prediction equation developed for subduction-type earthquakes and soil conditions by Youngs et al. (1997) is used for the computation of the Uniform Hazard Spectrum (UHS) and the CMS. The disaggregation of seismic hazard is then performed in order to determine the mean causal values of magnitude and source-to-site distance for a particular spectral ordinate (for a spectral period T = 1.0 s in this study). The spectral period of 1.0 s is considered to be representative for the new stock of residential and office reinforced concrete (RC) buildings in Bucharest. The differences between the Uniform Hazard Spectrum (UHS) and the Conditional Mean Spectrum (CMS) are discussed taking into account the scarcity of ground motions recorded in the region of Bucharest and the frequency content characteristics of the recorded data. Moreover, a record selection based on the criteria proposed by Baker and Cornell (2006) and Baker (2011) is performed using a dataset consisting of strong ground motions recorded during seven Vrancea seismic events.