• Title/Summary/Keyword: functions of loading

Search Result 317, Processing Time 0.024 seconds

Acoustical Similarity for Small Cooling Fans Revisited (소형 송풍기 소음의 음향학적 상사성에 관한 연구)

  • 김용철;진성훈;이승배
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1995.04a
    • /
    • pp.196-201
    • /
    • 1995
  • The broadband and discrete sources of sound in small cooling fans of propeller type and centrifugal type were investigated to understand the turbulent vortex structures from many bladed fans using ANSI test plenum for small air-moving devices (AMDs). The noise measurement method uses the plenum as a test apparatus to determine the acoustic source spectral density function at each operating conditions similar to real engineering applications based on acoustic similarity laws. The characteristics of fans including the head rise vs. volumetric flow rate performance were measured using a performance test facility. The sound power spectrum is decomposed into two non-dimensional functions: an acoustic source spectral distribution function F(St,.phi.) and an acoustic system response function G(He,.phi.) where St, He, and .phi. are the Strouhal number, the Helmholtz number, and the volumetric flow rate coefficient, respectively. The autospectra of radiated noise measurements for the fan operating at several volumetric flow rates,.phi., are analyzed using acoustical similarity. The rotating stall in the small propeller fan with a bell-mouth guided is mainly due to a leading edge separation. It creates a blockage in the passage and the reduction in the flow rate. The sound power levels with respect to the rotational speeds were measured to reveal the mechanisms of stall and/or surge for different loading conditions and geometries, for example, fans installed with a impinging plate. Lee and Meecham (1993) studied the effect of the large-scale motions like impinging normally on a flat plate using Large-Eddy Simulation(LES) and Lighthill's analogy.[ASME Winter Annual Meeting 1993, 93-WA/NCA-22]. The dipole and quadrupole sources in the fans tested are shown closely related to the vortex structures involved using cross-correlations of the hot-wire and microphone signals.

  • PDF

Performance Measurement Framework for Efficient Virtualization System Profiling (효율적인 가상화 시스템 프로파일링을 위한 성능측정 프레임워크)

  • Jang, Eun-Tae;Choi, Sang-Hoon;Park, Ki-Woong
    • The Journal of Korean Institute of Next Generation Computing
    • /
    • v.15 no.3
    • /
    • pp.31-39
    • /
    • 2019
  • Virtualization technology is one of the technologies that have been attracting attention as cloud computing spreads recently. When a system is constructed using virtualization technology, mutiple operation systems can be operated in a single host operating system, thereby facilitating efficient management of computing resources. As more and more operating systems are running on the hypervisor, it is important to measure the overall performance of the virtualization system and this is becoming an important technology. In this paper, we analyze the main functions of the existing profiling tools to measure the performance of the virtualization system, and measure and classify the profiling coverage that the monitoring tools can perform for events that may occur in the virtualization system. In addition, we have studied a framework that enables performance measurement by loading appropriate profiling tools into the guest system when performance measurement is required for the virtualization system according to the information received from the remote system performing the monitoring.

Rating and Lifetime Prediction of a Bridge with Maintenance (유지관리보수가 된 교량의 내하력평가 및 잔존수명 예측)

  • Seung-Ie Yang;Han-Jung Kim
    • Journal of the Korean Society of Safety
    • /
    • v.18 no.1
    • /
    • pp.108-115
    • /
    • 2003
  • Bridges are rated at two levels by either Load Factor Design (LFD) or Allowable Stress Design (ASD). The lower level rating is called Inventory Rating and the upper level rating is called Operating Rating. To maintain bridges effectively, there is an urgent need to assess actual bridge loading carrying capacity and to predict their remaining life from a system reliability viewpoint. The lifetime functions are introduced and explained to predict the time-dependent failure probability. The bridge studied in this paper was built 30 years ago in rural area. For this bridge, the load test and rehabilitation were conducted. The time-dependent system failure probability is predicted with or without rehabilitation. As a case study, an optional rehabilitation is suggested, and fir this rehabilitation, load rating is computed and the time-dependent system failure probability is predicted. Based on rehabilitation costs and extended service lifes, the optimal rehabilitation is suggested.

Development and Analyses of Xen based Dynamic Binary Instrumentation using Intel VT (Intel VT 기술을 이용한 Xen 기반 동적 악성코드 분석 시스템 구현 및 평가)

  • Kim, Tae-Hyoung;Kim, In-Hyuk;Eom, Young-Ik;Kim, Won-Ho
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.37 no.5
    • /
    • pp.304-313
    • /
    • 2010
  • There are several methods for malware analyses. However, it is difficult to detect malware exactly with existing detection methods. Especially, malware with strong anti-debugging facilities can detect analyzer and disturb their analyses. Furthermore, it takes too much time to analyze malware. In order to resolve these problems of current analyzers, more improved analysis scheme is required. This paper suggests a dynamic binary instrumentation which supports the instruction analysis and the memory access tracing. Additionally, by supporting the API call tracing with the DLL loading analysis, our system establishes the foundation for analyzing various executable codes. Based on Xen, full-virtualization environment is built using Intel's VT technology. Windows XP can be used as a guest. We analyze representative malware using several functions of our system, and show the accuracy and efficiency enhancements in binary analyses capability of our system.

High-Speed Implementation to CHAM-64/128 Counter Mode with Round Key Pre-Load Technique (라운드 키 선행 로드를 통한 CHAM-64/128 카운터 모드 고속 구현)

  • Kwon, Hyeok-dong;Jang, Kyoung-bae;Park, Jae-hoon;Seo, Hwa-jeong
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.30 no.6
    • /
    • pp.1217-1223
    • /
    • 2020
  • The Block cipher CHAM is lightweight block cipher for low-end processors, developed by National Security Research Institute from Korea. The mode of operation is necessity for efficient operation of block cipher, among them, the counter (CTR) mode has good efficiency because it is easy to implement and supporting parallel operation. In this paper, we propose the optimized implementation for block cipher CHAM-CTR. The proposed implementation can be skipped some rounds by pre-computation. Thus it has better calculating speed than existing CHAM. Also, this implementation pre-load some of round keys to registers, before entering round functions. It makes reduced 160cycles loading time for round key load. Finally, proposed implementation achieved higher performance about 6.8%, and 4.5% for fixed-key scenario, and variable-key scenario, respectively.

Aerodynamic Design Optimization of Airfoils for WIG Craft Using Response Surface Method (반응표면법을 이용한 지면효과익기 익형의 공력 설계최적화)

  • Kim, Yang-Joon;Joh, Chang-Yeol
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.5
    • /
    • pp.18-27
    • /
    • 2005
  • Airfoils with improved longitudinal static stability were designed for a WIG craft through aerodynamic design optimization. The response surface method is coupled with NURBS-based shape functions and Navier-Stokes flow analysis. The procedure runs in the network-distributed design framework of commercial-code based automated design capability to enhance computational efficiency and robustness.Lift maximization design maintaining similar static margin to a DHMTU airfoil successfully produced a new airfoil shape characterized by pronounced front-loading and the well-known reflexed aft-camber line. Another airfoil design of lower variation in pitching moment during take-off showed weakened front-loaded characteristics and hence decreased lift slightly. Investigations using the present design methodology on an existing optimization result based on potential flow analysis and NACA-type geometry generation demonstrated significance of carrying various geometry generations and more realistic flow analysis with optimization.

μ-Synthesis Controller Design and Experimental Verification for a Seismic-excited MDOF Building (지진을 받는 다자유도 건물의 μ합성 제어기 설계 및 검증실험)

  • 민경원;주석준;이영철
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.6 no.6
    • /
    • pp.41-48
    • /
    • 2002
  • This study is on the structural control experiment for a small scale three-story building structure employing on active mass damper subjected to earthquake loading. $\mu$-synthesis controllers, which belong to robust control strategies, were designed and their performance were experimentally verified. Frequency-dependent weighting functions corresponding to disturbance input and controlled output were defined and combined to produce optimal $\mu$-synthesis controllers. The experiment result shows 60-70% reduction in RMS responses under the band-limited white noise excitation and 30-45% reduction in peak responses under the scaled earthquake excitations. Good agreement was obtained between the simulations based on the identified mathematical model and experimental results. And the simulations for the system with uncertainties show that the designed controllers are robust within a specified range of uncertainties.

Development of a Remote Interactive Shell for RTOS (RTOS 용 원격 대화형쉘 설계 및 구현)

  • Kim, Dae-Hui;Nam, Yeong-Gwang;Kim, Heung-Nam;Lee, Gwang-Yong
    • The KIPS Transactions:PartD
    • /
    • v.9D no.4
    • /
    • pp.677-686
    • /
    • 2002
  • Recently, the Open-Development-Tool-Environment becomes a basic requirement of RTOS (Real Time Operating System) for embedded systems with restricted memory and CPU power in order to develop applications effectively. A remote interactive shell is one of the basic software components which makes users develop, test and control softwares without burdening target systems. In this paper, we have implemented the remote interactive shell with the following functions : loading object modules, spawning and manipulating tasks facilities thru a remote host. Comparing information reference methods with nonredundant overhead, we have achieved the system with easy maintenance. The shell has been developed with Q-PLUS RTOS under ARM EBSA285 target board and NT host.

Evaluating Impact Resistance of Externally Strengthened Steel Fiber Reinforced Concrete Slab with Fiber Reinforced Polymers (섬유 보강재로 외부 보강된 강섬유 보강 콘크리트 슬래브의 충격저항성능 평가)

  • Yoo, Doo-Yeol;Min, Kyung-Hwan;Lee, Jin-Young;Yoon, Young-Soo
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.3
    • /
    • pp.293-303
    • /
    • 2012
  • Recently, as construction technology improved, concrete structures not only became larger, taller and longer but were able to perform various functions. However, if extreme loads such as impact, blast, and fire are applied to those structures, it would cause severe property damages and human casualties. Especially, the structural responses from extreme loading are totally different than that from quasi-static loading, because large pressure is applied to structures from mass acceleration effect of impact and blast loads. Therefore, the strain rate effect and damage levels should be considered when concrete structure is designed. In this study, the low velocity impact loading test of steel fiber reinforced concrete (SFRC) slabs including 0%~1.5% (by volume) of steel fibers, and strengthened with two types of FRP sheets was performed to develop an impact resistant structural member. From the test results, the maximum impact load, dissipated energy and the number of drop to failure increased, whereas the maximum displacement and support rotation were reduced by strengthening SFRC slab with FRP sheets in tensile zone. The test results showed that the impact resistance of concrete slab can be substantially improved by externally strengthening using FRP sheets. This result can be used in designing of primary facilities exposed to such extreme loads. The dynamic responses of SFRC slab strengthened with FRP sheets under low velocity impact load were also analyzed using LS-DYNA, a finite element analysis program with an explicit time integration scheme. The comparison of test and analytical results showed that they were within 5% of error with respect to maximum displacements.

Development of a Remote Multi-Task Debugger for Qplus-T RTOS (Qplus-T RTOS를 위한 원격 멀티 태스크 디버거의 개발)

  • 이광용;김흥남
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.9 no.4
    • /
    • pp.393-409
    • /
    • 2003
  • In this paper, we present a multi-task debugging environment for Qplus-T embedded-system such as internet information appliances. We will propose the structure and functions of a remote multi-task debugging environment supporting environment effective ross-development. And, we are going enhance the communication architecture between the host and target system to provide more efficient cross-development environment. The remote development toolset called Q+Esto consists to several independent support tools: an interactive shell, a remote debugger, a resource monitor, a target manager and a debug agent. Excepting a debug agent, all these support tools reside on the host systems. Using the remote multi-task debugger on the host, the developer can spawn and debug tasks on the target run-time system. It can also be attached to already-running tasks spawned from the application or from interactive shell. Application code can be viewed as C/C++ source, or as assembly-level code. It incorporates a variety of display windows for source, registers, local/global variables, stack frame, memory, event traces and so on. The target manager implements common functions that are shared by Q+Esto tools, e.g., the host-target communication, object file loading, and management of target-resident host tool´s memory pool and target system´s symbol-table, and so on. These functions are called OPEn C APIs and they greatly improve the extensibility of the Q+Esto Toolset. The Q+Esto target manager is responsible for communicating between host and target system. Also, there exist a counterpart on the target system communicating with the host target manager, which is called debug agent. Debug agent is a daemon task on real-time operating systems in the target system. It gets debugging requests from the host tools including debugger via target manager, interprets the requests, executes them and sends the results to the host.