• 제목/요약/키워드: functions of loading

검색결과 318건 처리시간 0.029초

A numerical framework of the phenomenological plasticity and fracture model for structural steels under monotonic loading

  • He, Qun;Yam, Michael C.H.;Xie, Zhiyang;Lin, Xue-Mei;Chung, Kwok-Fai
    • Steel and Composite Structures
    • /
    • 제44권4호
    • /
    • pp.587-602
    • /
    • 2022
  • In this study, the classical J2 flow theory is explicitly proved to be inappropriate to describe the plastic behaviour of structural steels under different stress states according to the reported test results. A numerical framework of the characterization of the strain hardening and ductile fracture initiation involving the effect of stress states, i.e., stress triaxiality and Lode angle parameter, is proposed based on the mechanical response of structural steels under monotonic loading. Both effects on strain hardening are determined by correction functions, which are implemented as different modules in the numerical framework. Thus, other users can easily modify them according to their test results. Besides, the ductile fracture initiation is determined by a fracture locus in the space of stress triaxiality, Lode angle parameter, and fracture strain. The numerical implementation of the proposed model and the corresponding code are provided in this paper, which are also available on GitHub. The validity of the numerical procedure is examined through single element tests and the accuracy of the proposed model is verified by existing test results.

Assessment of capacity curves for transmission line towers under wind loading

  • Banik, S.S.;Hong, H.P.;Kopp, Gregory A.
    • Wind and Structures
    • /
    • 제13권1호
    • /
    • pp.1-20
    • /
    • 2010
  • The recommended factored design wind load effects for overhead lattice transmission line towers by codes and standards are evaluated based on the applicable wind load factor, gust response factor and design wind speed. The current factors and design wind speed were developed considering linear elastic responses and selected notional target safety levels. However, information on the nonlinear inelastic responses of such towers under extreme dynamic wind loading, and on the structural capacity curves of the towers in relation to the design capacities, is lacking. The knowledge and assessment of the capacity curve, and its relation to the design strength, is important to evaluate the integrity and reliability of these towers. Such an assessment was performed in the present study, using a nonlinear static pushover (NSP) analysis and incremental dynamic analysis (IDA), both of which are commonly used in earthquake engineering. For the IDA, temporal and spatially varying wind speeds are simulated based on power spectral density and coherence functions. Numerical results show that the structural capacity curves of the tower determined from the NSP analysis depend on the load pattern, and that the curves determined from the nonlinear static pushover analysis are similar to those obtained from IDA.

Trajectory Data Warehouses: Design and Implementation Issues

  • Orlando, Salvatore;Orsini, Renzo;Raffaeta, Alessandra;Roncato, Alessandro;Silvestri, Claudio
    • Journal of Computing Science and Engineering
    • /
    • 제1권2호
    • /
    • pp.211-232
    • /
    • 2007
  • In this paper we investigate some issues and solutions related to the design of a Data Warehouse (DW), storing several aggregate measures about trajectories of moving objects. First we discuss the loading phase of our DW which has to deal with overwhelming streams of trajectory observations, possibly produced at different rates, and arriving in an unpredictable and unbounded way. Then, we focus on the measure presence, the most complex measure stored in our DW. Such a measure returns the number of distinct trajectories that lie in a spatial region during a given temporal interval. We devise a novel way to compute an approximate, but very accurate, presence aggregate function, which algebraically combines a bounded amount of measures stored in the base cells of the data cube. We conducted many experiments to show the effectiveness of our method to compute such an aggregate function. In addition, the feasibility of our innovative trajectory DW was validated with an implementation based on Oracle. We investigated the most challenging issues in realizing our trajectory DW using standard DW technologies: namely, the preprocessing and loading phase, and the aggregation functions to support OLAP operations.

Residual capacity assessment of post-damaged RC columns exposed to high strain rate loading

  • Abedini, Masoud;Zhang, Chunwei
    • Steel and Composite Structures
    • /
    • 제45권3호
    • /
    • pp.389-408
    • /
    • 2022
  • Residual capacity is defined as the load carrying capacity of an RC column after undergoing severe damage. Evaluation of residual capacity of RC columns is necessary to avoid damage initiation in RC structures. The central aspect of the current research is to propose an empirical formula to estimate the residual capacity of RC columns after undergoing severe damage. This formula facilitates decision making of whether a replacement or a repair of the damaged column is adequate for further use. Available literature mainly focused on the simulation of explosion loads by using simplified pressure time histories to develop residual capacity of RC columns and rarely simulated the actual explosive. Therefore, there is a gap in the literature concerning general relation between blast damage of columns with different explosive loading conditions for a reliable and quick evaluation of column behavior subjected to blast loading. In this paper, the Arbitrary Lagrangian Eulerian (ALE) technique is implemented to simulate high fidelity blast pressure propagations. LS-DYNA software is utilized to solve the finite element (FE) model. The FE model is validated against the practical blast tests, and outcomes are in good agreement with test results. Multivariate linear regression (MLR) method is utilized to derive an analytical formula. The analytical formula predicts the residual capacity of RC columns as functions of structural element parameters. Based on intensive numerical simulation data, it is found that column depth, longitudinal reinforcement ratio, concrete strength and column width have significant effects on the residual axial load carrying capacity of reinforced concrete column under blast loads. Increasing column depth and longitudinal reinforcement ratio that provides better confinement to concrete are very effective in the residual capacity of RC column subjected to blast loads. Data obtained with this study can broaden the knowledge of structural response to blast and improve FE models to simulate the blast performance of concrete structures.

횡방향 전단하중을 받는 단일방향 복합재료의 미시역학적 거동연구 (Micromechanical behavior of unidirectional composites under a transverse shear loading)

  • 최흥섭
    • 대한기계학회논문집A
    • /
    • 제21권11호
    • /
    • pp.1896-1911
    • /
    • 1997
  • Effects of fiber-matrix interphases on the micro-and macro-mechanical behaviors of unidirectionally fiber-reinforced composites subjected to transverse shear loading at remote distance have been studied. The interphases between fibers and matrix have been modeled by the spring-layer which accounts for continuity of tractions, but allows radial and circumferential displacement jumps across the interphase that are linearly related to the normal and tangential tractions. Numerical calculations for basic cells of the composites have been carried out using the boundary element method. For an undamaged composite the micro-level stresses at the matrix side of the interphase and effective shear stiffness have been computed as functions of fiber volume ratio $V_f$ and interphase stiffness k. Results are presented for various interphase stiffnesses from the perfect bonding to the case of total debonding. For a square array composite the results show that for a high interphase stiffness k>10, an increase of $V_f$ increases the effective transverse shear modulus G over bar of the composite. For a relatively low interphase stiffness k<1, it is shwon that an increase of $V_f$ slightly decreases the effective transverse shear modulus. For the perfect bonding case, G over bar for a hexagonal array composite is slightly larger than that for a square array composite. Also for a damaged composite partially debonded at the interphase, local stress fields and effective shear modulus are calculated and a decrease in G over bar has been observed.

Rapid Repair of Severely Damaged RC Columns with Different Damage Conditions: An Experimental Study

  • He, Ruili;Sneed, Lesley H.;Belarbi, Abdeldjelil
    • International Journal of Concrete Structures and Materials
    • /
    • 제7권1호
    • /
    • pp.35-50
    • /
    • 2013
  • Rapid and effective repair methods are desired to enable quick reopening of damaged bridges after an earthquake occurs, especially for those bridges that are critical for emergency response and other essential functions. This paper presents results of tests conducted as a proof-of-concept in the effectiveness of a proposed method using externally bonded carbon fiber reinforced polymer (CFRP) composites to rapidly repair severely damaged RC columns with different damage conditions. The experimental work included five large-scale severely damaged square RC columns with the same geometry and material properties but with different damage conditions due to different loading combinations of bending, shear, and torsion in the previous tests. Over a three-day period, each column was repaired and retested under the same loading combination as the corresponding original column. Quickset repair mortar was used to replace the removed loose concrete. Without any treatment to damaged reinforcing bars, longitudinal and transverse CFRP sheets were externally bonded to the prepared surface to restore the column strength. Measured data were analyzed to investigate the performance of the repaired columns compared to the corresponding original column responses. It was concluded that the technique can be successful for severely damaged columns with damage to the concrete and transverse reinforcement. For severely damaged columns with damaged longitudinal reinforcement, the technique was found to be successful if the damaged longitudinal reinforcement is able to provide tensile resistance, or if the damage is located at a section where longitudinal CFRP strength can be developed.

소형 어선의 재화상태를 고려한 중량 정보 추정 기법 (Estimation of Weight Parameters for Small Fishing Vessels in Accordance with Loading Conditions)

  • 김동진;여동진
    • 한국항해항만학회지
    • /
    • 제43권1호
    • /
    • pp.16-22
    • /
    • 2019
  • 본 연구에서는 국내 소형 어선의 재화상태에 따른 중량 및 무게중심 추정식을 제안하였다. 소형 어선에 탑재되는 중량물은 선원, 어구 등의 고정 중량과 연료, 청수, 식량, 미끼, 어획물 등의 가변 중량으로 분류할 수 있다. 다양한 소형 어선들의 중량 데이터를 통계 분석한 후, 각 탑재물의 중량 및 무게중심을 총톤수에 대하여 선형 함수화하였다. 그리고 재화상태를 고려하여 각 가변 중량물에 가중치를 부가하는 방식으로 총 중량 및 무게중심 추정식을 구성하였다. 소형 어선의 길이와 총톤수, 그리고 재화상태 정보만을 활용하여 총 중량 및 무게중심을 상당히 신뢰도 높게 추정할 수 있음을 검증하였다.

터널을 통과하는 고속열차 차체의 피로신뢰성 평가의 정식화 (Formulation for Reliability-based Fatigue Assessment of Car Body for High Speed Train Passing Through Tunnels)

  • 서승일;민옥기;박춘수
    • 한국철도학회논문집
    • /
    • 제8권4호
    • /
    • pp.348-353
    • /
    • 2005
  • In designing the structures of railway rolling stocks, deterministic methods associated with the concept of a safety factor have been traditionally used. The deterministic approaches based on the mean values of applied loads and material properties have been used as safety verification for the design of rolling-stock car body structures. The uncertainties in the applied loading for the high speed train and the strength of new materials in the rolling stocks require the application of probabilistic approaches to ensure fatigue safety in the desired system. Pressure loadings acting on the car body when the train passes through tunnels show reflected pressure waves for high-speed trains and they may cause a fatigue failure in vehicle bodies. Use of new material technology as body structures also introduces uncertainties in the material strength. A probabilistic approach is more adaptable in designing reliable structures when the pressure waves from the tunnels pounds and new material technology is adopted. In this paper, it is proposed that a fatigue design and assessment method based on a reliability which deals with the loading variations on a railway vehicle due to the pressure reflected in tunnels and the strength variations of material. Equation for the fatigue reliability index has been formulated to calculate the reliability assessment of a vehicle body under fluctuating pressure loadings in a tunnel. Considered in this formulation are the pressure distribution characteristics, the fatigue strength distribution characteristics, and the concept of stress-transfer functions due to the pressure loading.

Alternative reliability-based methodology for evaluation of structures excited by earthquakes

  • Gaxiola-Camacho, J. Ramon;Haldar, Achintya;Reyes-Salazar, Alfredo;Valenzuela-Beltran, Federico;Vazquez-Becerra, G. Esteban;Vazquez-Hernandez, A. Omar
    • Earthquakes and Structures
    • /
    • 제14권4호
    • /
    • pp.361-377
    • /
    • 2018
  • In this paper, an alternative reliability-based methodology is developed and implemented on the safety evaluation of structures subjected to seismic loading. To effectively elaborate the approach, structures are represented by finite elements and seismic loading is applied in time domain. The accuracy of the proposed reliability-based methodology is verified using Monte Carlo Simulation. It is confirmed that the presented approach provides adequate accuracy in calculating structural reliability. The efficiency and robustness in problems related to performance-based seismic design are verified. A structure designed by experts satisfying all post-Northridge seismic design requirements is studied. Rigidities related to beam-to-column connections are incorporated. The structure is excited by three suites of ground motions representing three performance levels: immediate occupancy, life safety, and collapse prevention. Using this methodology, it is demonstrated that only hundreds of deterministic finite element analyses are required for extracting reliability information. Several advantages are documented with respect to Monte Carlo Simulation. To showcase an applicability extension of the proposed reliability-based methodology, structural risk is calculated using simulated ground motions generated via the broadband platform developed by the Southern California Earthquake Center. It is validated the accuracy of the broadband platform in terms of structural reliability. Based on the results documented in this paper, a very solid, sound, and precise reliability-based methodology is proved to be acceptable for safety evaluation of structures excited by seismic loading.

소형풍력발전 블레이드용 복합재료의 피로수명 분포에 대한 확률론적 평가 (Statistical Distribution of Fatigue Life of Composite Materials for Small Wind-Turbine Blades)

  • 강기원
    • 대한기계학회논문집A
    • /
    • 제35권10호
    • /
    • pp.1281-1289
    • /
    • 2011
  • 본 논문에서는 소형풍력발전시스템 블레이드 제작에 사용되는 복합재료의 피로수명 데이터에 대한 통계적 해석을 위하여 다양한 확률분포 모델의 적합성에 대한 연구를 수행하였다. 이를 위하여 삼축 유리섬유강화 복합재료를 대상으로 0$^{\circ}C$, 45$^{\circ}C$ 및 90$^{\circ}C$ 의 하중방향에 대한 인장시험을 실시하였다. 또한 상기의 하중방향에 대하여 4 수준의 피로응력준에서의 피로시험을 수행하였다. 이를 통하여 획득한 피로수명 데이터를 대상으로 1) 전체 적합성, 2) 끝단 적합성 및 3) 피로물리 일치성의 기준을 이용하여 2 모수 Weibull, 3 모수 Weibull, 정규 및 대수정규분포의 적합성을 평가하였다. 또한 피로수명의 분산에 대한 하중방향 및 피로응력의 영향 역시 검토하였다.