• 제목/요약/키워드: functionally graded porous structure

검색결과 23건 처리시간 0.016초

Analytical solution for buckling analysis of micro sandwich hollow circular plate

  • Mousavi, Mohammad;Mohammadimehr, Mehdi;Rostami, Rasoul
    • Computers and Concrete
    • /
    • 제24권3호
    • /
    • pp.185-192
    • /
    • 2019
  • In this paper, the buckling of micro sandwich hollow circular plate is investigated with the consideration of the porous core and piezoelectric layer reinforced by functionally graded (FG)carbon nano-tube. For modeling the displacement field of sandwich hollow circular plate, the high-order shear deformation theory (HSDT) of plate and modified couple stress theory (MCST) are used. The governing differential equations of the system can be derived using the principle of minimum potential energy and Maxwell's equation that for solving these equations, the Ritz method is employed. The results of this research indicate the influence of various parameters such as porous coefficients, small length scale parameter, distribution of carbon nano-tube in piezoelectric layers and temperature on critical buckling load. The purpose of this research is to show the effect of physical parameters on the critical buckling load of micro sandwich plate and then optimize these parameters to design structures with the best efficiency. The results of this research can be used for optimization of micro-structures and manufacturing different structure in aircraft and aerospace.

Mathematical formulations for static behavior of bi-directional FG porous plates rested on elastic foundation including middle/neutral-surfaces

  • Amr E. Assie;Salwa A. Mohamed;Alaa A. Abdelrahman;Mohamed A. Eltaher
    • Steel and Composite Structures
    • /
    • 제48권2호
    • /
    • pp.113-130
    • /
    • 2023
  • The present manuscript aims to investigate the deviation between the middle surface (MS) and neutral surface (NS) formulations on the static response of bi-directionally functionally graded (BDFG) porous plate. The higher order shear deformation plate theory with a four variable is exploited to define the displacement field of BDFG plate. The displacement field variables based on both NS and on MS are presented in detail. These relations tend to get and derive a new set of boundary conditions (BCs). The porosity distribution is portrayed by cosine function including three different configurations, center, bottom, and top distributions. The elastic foundation including shear and normal stiffnesses by Winkler-Pasternak model is included. The equilibrium equations based on MS and NS are derived by using Hamilton's principles and expressed by variable coefficient partial differential equations. The numerical differential quadrature method (DQM) is adopted to solve the derived partial differential equations with variable coefficient. Rigidities coefficients and stress resultants for both MS and NS formulations are derived. The mathematical formulation is proved with previous published work. Additional numerical and parametric results are developed to present the influences of modified boundary conditions, NS and MS formulations, gradation parameters, elastic foundations coefficients, porosity type and porosity coefficient on the static response of BDFG porous plate. The following model can be used in design and analysis of BDFG structure used in aerospace, vehicle, dental, bio-structure, civil and nuclear structures.

Combined influence of porosity and elastic foundation parameters on the bending behavior of advanced sandwich structures

  • Malek Hadji;Abdelhakim Bouhadra;Belgacem Mamen;Abderahmane Menasria;Abdelmoumen Anis Bousahla;Fouad Bourada;Mohamed Bourada;Kouider Halim Benrahou;Abdelouahed Tounsi
    • Steel and Composite Structures
    • /
    • 제46권1호
    • /
    • pp.1-13
    • /
    • 2023
  • Elastic bending of imperfect functionally graded sandwich plates (FGSPs) laying on the Winkler-Pasternak foundation and subjected to sinusoidal loads is analyzed. The analyses have been established using the quasi-3D sinusoidal shear deformation model. In this theory, the number of unknowns is condensed to only five unknowns using integral-undefined terms without requiring any correction shear factor. Moreover, the current constituent material properties of the middle layer is considered homogeneous and isotropic. But those of the top and bottom face sheets of the graded porous sandwich plate (FGSP) are supposed to vary regularly and continuously in the direction of thickness according to the trigonometric volume fraction's model. The corresponding equilibrium equations of FGSPs with simply supported edges are derived via the static version of the Hamilton's principle. The differential equations of the system are resolved via Navier's method for various schemes of FGSPs. The current study examine the impact of the material index, porosity, side-to-thickness ratio, aspect ratio, and the Winkler-Pasternak foundation on the displacements, axial and shear stresses of the sandwich structure.