• 제목/요약/키워드: functionalized surface

검색결과 249건 처리시간 0.021초

Thiolated Protein A-functionalized Bimetallic Surface Plasmon Resonance Chip for Enhanced Determination of Amyloid Beta 42

  • Kim, Hyung Jin;Kim, Chang-Duk;Sohn, Young-Soo
    • 공업화학
    • /
    • 제30권3호
    • /
    • pp.379-383
    • /
    • 2019
  • The capability of detecting amyloid beta 42 ($A{\beta}42$), a biomarker of Alzheimer's disease, using a thiolated protein A-functionalized bimetallic surface plasmon resonance (SPR) chip was investigated. An optimized configuration of a bimetallic chip containing gold and silver was obtained through calculations in the intensity measurement mode. The surface of the SPR bimetallic chip was functionalized with thiolated protein A for the immobilization of $A{\beta}42$ antibody. The response of the thiolated protein A-functionalized bimetallic chip to $A{\beta}42$ in the concentration range of 50 to 1,000 pg/mL was linear. Compared to protein A without thiolation, the thiolated protein A resulted in greater sensitivity. Therefore, the thiolated protein A-functionalized bimetallic SPR chip can be used to detect very low concentrations of the biomarker for Alzheimer's disease.

화학적으로 기능화된 탄소나노튜브를 사용한 고분자 복합재료의 제조 및 물성 평가에 대한 연구 (Manufacturing/Material Property Characterization of Polymer Nano-composites with Chemically Functionalized Carbon Nanotubes)

  • 김태구;곽정춘;이내성;이종휘;박주혁
    • 대한기계학회논문집A
    • /
    • 제28권10호
    • /
    • pp.1534-1540
    • /
    • 2004
  • This study aims to obtain fundamental understandings involving the manufacturing processes of nano-composites with chemically surface-modified multi-walled carbon nanotubes(MWCNTs), and explore the role of functionalized MWCNTs in the epoxy/MWCNT composites. For this purpose, MWCNTs were purified by the thermo-chemical oxidation process, and incorporated into an epoxy matrix by in situ polymerization process, the surface of MWCNTs were functionalized with carboxyl functions which were demonstrated by an infrared spectroscopy. The mechanical properties of epoxy/MWCNT nano-composites were measured to investigate the role of a chemically functionalized carbon nanotubes. To improve the dispersion quality of MWCNTs in the epoxy matrix, methanol and acetone were exploited as dispersion media with sonification. The epoxy/MWCNT nano-composites with 1 or 2 wt.% addition of functionalized carbon nanotubes show an improved tensile strength and wear resistance in comparison with pure epoxy, which shows the mechanical load transfer improves through chemical bonds between epoxy and functionalized MWCNTs. The tensile strength with 7 wt.% functionalized MWCNTs increases by 28% and the wear resistance is dramatically improved by 100 times.

Amine functionalized plasma polymerized PEG film: Elimination of non-specific binding for biosensing

  • Park, Jisoo;Kim, Youngmi;Jung, Donggeun;Kim, Young-Pil;Lee, Tae Geol
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2016년도 제50회 동계 정기학술대회 초록집
    • /
    • pp.378.2-378.2
    • /
    • 2016
  • Biosensors currently suffer from severe non-specific adsorption of proteins, which causes false positive errors in detection through overestimation of the affinity value. Overcoming this technical issue motivates our research. Polyethylene glycol (PEG) is well known for its ability to reduce the adsorption of biomolecules; hence, it is widely used in various areas of medicine and other biological fields. Likewise, amine functionalized surfaces are widely used for biochemical analysis, drug delivery, medical diagnostics and high throughput screening such as biochips. As a result, many coating techniques have been introduced, one of which is plasma polymerization - a powerful coating method due to its uniformity, homogeneity, mechanical and chemical stability, and excellent adhesion to any substrate. In our previous works, we successfully fabricated plasmapolymerized PEG (PP-PEG) films [1] and amine functionalized films [2] using the plasma enhanced chemical vapor deposition (PECVD) technique. In this research, an amine functionalized PP-PEG film was fabricated by using the plasma co-polymerization technique with PEG 200 and ethylenediamine (EDA) as co-precursors. A biocompatible amine functionalized film was surface characterized by X-ray photoelectron spectroscopy (XPS) and Fourier-transform infrared spectroscopy (FT-IR). The density of the surface amine functional groups was carried out by quantitative analysis using UV-visible spectroscopy. We found through surface plasmon resonance (SPR) analysis that non-specific protein adsorption was drastically reduced on amine functionalized PP-PEG films. Our functionalized PP-PEG films show considerable potential for biotechnological applications such as biosensors.

  • PDF

CO2 Adsorption of Amine Functionalized Activated Carbons

  • Meng, Longyue;Cho, Ki-Sook;Park, Soo-Jin
    • Carbon letters
    • /
    • 제10권3호
    • /
    • pp.221-224
    • /
    • 2009
  • In this work, the $CO_2$ adsorption behaviors of amine functionalized activated carbons (ACs) were investigated. The surface of ACs was modified with urea, melamine, diethylenetriamine (DETA), pentaethylenehexamine (PEHA), polyethylenimine (PEI), and 3-aminopropyl-triethoxysilane (ATPS). The various surface properties of amine functionalized ACs were characterized by Boehm's method, nitrogen full isotherms, XPS, and TGA analyses. The active ingredients impregnated on the ACs show significant influence on the adsorption for $CO_2$ and its volumes adsorbed on amine functionalized ACs are larger than that on the pristine ACs, which is due to the grafted amine groups of the AC surfaces.

Effect of Interface on the Properties of Polyamide 6/Carbon Nanotube Nanocomposites Prepared by In-situ Anionic Ring-opening Polymerization

  • Min, Jin Hong;Huh, Mongyoung;Yun, Seok Il
    • Composites Research
    • /
    • 제32권6호
    • /
    • pp.375-381
    • /
    • 2019
  • Multiwalled carbon nanotubes (MWCNTs) are covalently functionalized with isocyanates by directly reacting commercial hydroxyl functionalized MWCNTs with excess 4,4'-methylenebis (phenyl isocyanate) (MDI) and hexamethylene diiosocyanate (HDI). HDI-modified MWCNTs results in a higher surface isocyanate density than MDI-modified MWCNTs. Anionic ring-opening polymerization of ε-caprolactam is conducted using a sodium caprolactam initiator in combination with a di-functional hexamethylene-1,6-dicarbamoylcaprolactam activator in the presence of isocyanate functionalized MWCNTs. This polymerization proceeds in a highly efficient manner at relatively low reaction temperature (150℃) and short reaction times (10 min). During the polymerization, the isocyanate functionalized MWCNTs act not only as reinforcing fillers but also as second activators. Nanocomposites with HDI modified MWCNTs exhibit higher reinforcement and faster isothermal crystallization than MDI modified MWCNTs. The results show that PA6 chains grow more effectively from HDI modified MWCNT surface than from MDI modified MWCNT surface, resulting in stronger interaction between PA6 and MWCNTs.

Bubble breakup dynamics and flow behaviors of a surface-functionalized nanocellulose based nanofluid stabilized foam in constricted microfluidic devices

  • Wei, Bing;Wang, Yuanyuan;Wen, Yangbing;Xu, Xingguang;Wood, Colin;Sun, Lin
    • Journal of Industrial and Engineering Chemistry
    • /
    • 제68권
    • /
    • pp.24-32
    • /
    • 2018
  • Nanocellulose was surface-functionalized toward the applications in enhanced oil recovery (EOR) as a green alternative. The focus of this paper is on the effect of this material based nanofluid (NF) on foam lamella stabilization through studying its bubble breakup dynamics and flow behaviors in constricted mircofluidic devices. The NF stabilized foam produced an improved flow resistance across the capillary largely due to the capillary trapped bubbles at the contraction. The "snap-off" caused the NF stabilized foam to produce finer textured bubbles, which can migrate readily forward to the deep porous media, as revealed by the pressure profiles.

Nanoporous carbon synthesized from grass for removal and recovery of hexavalent chromium

  • Pathan, Shahin A.;Pandita, Nancy S.
    • Carbon letters
    • /
    • 제20권
    • /
    • pp.10-18
    • /
    • 2016
  • Nanoporous carbon structures were synthesized by pyrolysis of grass as carbon precursor. The synthesized carbon has high surface area and pore volume. The carbon products were acid functionalized and characterized by Fourier transform infrared spectroscopy, X-ray diffraction, Brunauer–Emmett–Teller, transmission electron microscopy, and Energy Dispersive X-ray microanalysis. Acid functionalized nanoporous carbon was explored for use in removal of toxic Cr(VI) ions from aqueous media. An adsorption study was done as a function of initial concentration, pH, contact time, temperature, and interfering ions. The experimental equilibrium data fits well to Langmuir isotherm model with maximum monolayer adsorption capacity of 35.335 mg/g. The results indicated that removal obeys a pseudo-second-order kinetic model, and that equilibrium was reached in 10 min. A desorption study was done using NaOH. The results of the present study imply that acid functionalized nanoporous carbon synthesized from grass is an efficient, renewable, cost-effective adsorbent material for removal of hexavalent chromium due to its faster removal rate and reusability.

아미노실란화 철산화물 나노입자를 이용한 Human DNA의 초고속 자성분리 (High Throughput Magnetic Separation for Human DNA by Aminosilanized Iron Oxide Nanoparticles)

  • 강기호;장정호
    • 한국세라믹학회지
    • /
    • 제45권10호
    • /
    • pp.605-609
    • /
    • 2008
  • This work describes the preparation of functionalized magnetic nanoparticles(MNPs) and their bioapplication to human DNA separation. Silica coated MNPs were prepared by changing the volume ratio of tetraethyl orthosilicate(TEOS) for controlled coating thickness on the original nanoparticle of MNPs. The sol-gel process in silica coating on MNPs surface was adapted for relatively mild reaction condition, low-cost, and surfactant-free. And then amino functionalized magnetic nanoparticles were synthesized using amine groups as surface modifiers. The result of adsorption efficiency for human DNA with amino-functionalized silica coated MNPs was calculated as a function of the number of amine groups.

Synthesis of Thiol-Functionalized Ionic Liquids and Formation of Self-Assembled Monolayer on Gold Surfaces: Effects of Alkyl Group and Anion on the Surface Wettability

  • Lee, Bang-Sook;Lee, Sang-Gi
    • Bulletin of the Korean Chemical Society
    • /
    • 제25권10호
    • /
    • pp.1531-1537
    • /
    • 2004
  • Twenty four thiol-functionalized ionic liquids based on imidazolium cation, 1-(12-mercaptododecyl)-3-alkylimidazolium salts, have been synthesized, and utilized to investigate the effects of alkyl-chain length and anion on the wettability of Au surfaces on the basis of self-assembled monolayers presenting [(CnSAMIM)X], where n = 1-6, X = Br, $BF_4$, $PF_4$ and $NTf_2$. Water wettabilities of the surfaces were measured as a water contact angle by contact angle goniometry. It was found that water wettability of the Au surfaces coated with imidazolium ions was largely dependent not only on counter anions but also on the length of alkyl chains. In the case of SAMs of N-alkylimidazolium ions having short length of N-alkyl chain (C1-$C_4$), anions played great role in determining water wettability of the surfaces.

Functionalized magnetite / silica nanocomposite for oily wastewater treatment

  • Hakimabadi, Seyfollah Gilak;Ahmadpour, Ali;Mosavian, Mohammad T. Hamed;Bastami, Tahereh Rohani
    • Advances in environmental research
    • /
    • 제4권2호
    • /
    • pp.69-81
    • /
    • 2015
  • A new magnetite-silica core/shell nanocomposite ($Fe_3O4@nSiO_2@mSiO_2$) was synthesized and functionalized with trimethylchlorosilane (TMCS). The prepared nanocomposite was used for the removal of diesel oil from aqueous media. The characterization of magnetite-silica nanocomposite was studied by X-ray diffraction (XRD), Fourier transform infrared (FTIR), transmission electron microscopy (TEM), surface area measurement, and vibrating sample magnetization (VSM). Results have shown that the desired structure was obtained and surface modification was successfully carried out. FTIR analysis has confirmed the presence of TMCS on the surface of magnetite silica nanocomposites. The low- angle XRD pattern of nanocomposites indicated the mesoscopic structure of silica shell. Furthermore, TEM results have shown the core/shell structure with porous silica shell. Adsorption kinetic studies indicated that the nanocomposite was able to remove 80% of the oil contaminant during 2 h and fit well with the pseudo-second order model. Equilibrium studies at room temperature showed that the experimental data fitted well with Freundlich isotherm. The magnetic property of nanocomposite facilitated the separation of solid phase from aqueous solution.