• Title/Summary/Keyword: functional properties and structure of protein

검색결과 35건 처리시간 0.019초

A STUDY ON OSTEOBLAST-LIKE CELL RESPONSES TO SURFACE-MODIFIED TITANIUM

  • Hong Min-Ah;Kim Yung-Soo;Kim Chang-Whe;Jang Kyung-Su;Lee Jae-Il
    • 대한치과보철학회지
    • /
    • 제41권3호
    • /
    • pp.300-318
    • /
    • 2003
  • Statement of problem: The success of implants depends on intimate and direct contact of implant material on bone tissue and on functional relationship with soft tissue contact. Creation and maintenance of osseointegration depend on the understanding of the tissue's healing, repairing, and remodeling capacity and these capacities rely on cellular behavior. Altering the surface properties can modify cellular responses such as cell adhesion, cell motility, bone deposition, Therefore, various implant surface treatment methods are being developed for the improved bone cell responses. Purpose: The purpose of this study was to evaluate the responses of osteoblast-like cells to surface-modified titanium. Materials and Methods: The experiment was composed of four groups. Group 1 represented the electropolished surface. Group 2 surfaces were machined surface. Group 3 and Group 4 were anodized surfaces. Group 3 had low roughness and Group 4 had high roughness. Physicochemical properties and microstructures of the discs were examined and the responses of osteoblast-like cells to the discs were investigated. The microtopography was observed by SEM. The roughness was measured by three-dimension roughness measuring system. The microstructure was analyzed by XRD, AES. To evaluate cell responses to modified titanium surfaces, osteoblasts isolated from calvaria of neonatal rat were cultured. Cell count, morphology, total protein measurement and alkaline phosphatase activities of the cultures were examined. Results and Conclusion: The results were as follows 1. The four groups showed specific microtopography respectively. Anodized group showed grain structure with micropores. 2. Surface roughness values were, from the lowest to the highest, electropolished group, machined group, low roughness anodized group, and high roughness anodized group. 3. Highly roughened anodized group was found to have increased surface oxide thickness and surface crystallinity. 4. The morphology of cells, flattened or spherical, were different from each other. In the electropolished group and machined group, the cells were almost flattened. In two anodized groups, some cells were spherical and other cells were flattened. And the 14 day culture cells of all of the groups were nearly flattened due to confluency. 5. The number of attached cells was highest in low roughness anodized group. And the machined group had significantly lower cell count than any other groups(P<.05). 6. Total protein contents showed no difference among groups. 7. The level of alkaline phosphatase activities was higher in the anodized groups than electropolished and machined groups(P<.05).

Solute Carrier SLC41A1 'A MINI REVIEW'

  • Basnet Hom Bahadur
    • 한국환경성돌연변이발암원학회지
    • /
    • 제25권2호
    • /
    • pp.60-65
    • /
    • 2005
  • The human solute carrier, SLC41Al, is a $Mg^{2}+$ transporter that is regulated by extracellular magnesium. Although intracellular magnesium plays a fundamental role in cellular metabolism, little is known about how $Mg^{2}+$ is taken up and controlled by cells. Magnesium plays a fundamental role in cellular metabolism so that its control within the body is critical. Magnesium homeostasis is principally a balance between intestinal absorption of dietary magnesium and renal excretion of urinary magnesium. The kidney, mainly the distal convoluted tubule, controls magnesium reabsorption. Although renal reabsorption is under the influence of many hormones, selective regulation of magnesium transport is due to intrinsic control involving transcriptional processes and synthesis of transport proteins. Using microarray analysis, identification of the genetic elements involved with this transcriptional control has been begun. SLC41A1(GenBank Accession No. AJ514402), comprises 10 putative transmembrane domains, two of which are highly homologous to the integral membrane part of the prokaryote transports $Mg^{2}+$ and other divalent cations $Sr^2+,\;Zn^2+,\;Cu^2+,\;Fe^2+,\;Co^2+,\;Ba^2+,\;and\;Cd^2+,\;but\;not\;Ca^2+,\;Mn^2+,\;and\;Ni^2+.$ Transport of $Mg^{2}+$ by SLC41Al is rheogenic, voltage dependent, and not coupled to Na or Cl. Expressed SLC41Al transports a range of other divalent cations: $Mg^{2+},\;Sr^{2+},\;Zn^{2+},\;Cu^{2+},\;Fe^{2+},\;Co^{2+},\;Ba^{2+},\;and\;Cd^{2+}$. The divalent cations $Ca^{2+},\;Mn^{2+},\;and\;Ni^{2+}$and the trivalent ion $Gd^{3+}$ did not induce currents nor did they inhibit $Mg^{2+}$ transport. The nonselective cation $La^{3+}$ abolishes $Mg^{2+}$ uptake. Computer analysis of the SLC41Al protein structure reveals that it belongs to MgtE protein family & suggested that the human solute carrier, SLC41Al, might be a eukaryotic $Mg^{2+}$ transporter closely related $(60-70\%)$ protein encoded by SLC41A2 is a $Mg^{2}+$ transporter that might be involved in magnesium homeostasis in epithelial cells also transports a range of other divalent cations: $Ba^2,\;Ni^2,\;CO^2,\;Fe^2,\;or\;Mn^2,\;but\;not\;Ca^2,\;Zn^2,\;or\;Cu^{2+}$ that may have related functional properties.

  • PDF

Ginsenoside Rf inhibits cyclooxygenase-2 induction via peroxisome proliferator-activated receptor gamma in A549 cells

  • Song, Heewon;Park, Joonwoo;Choi, KeunOh;Lee, Jeonggeun;Chen, Jie;Park, Hyun-Ju;Yu, Byeung-Il;Iida, Mitsuru;Rhyu, Mee-Ra;Lee, YoungJoo
    • Journal of Ginseng Research
    • /
    • 제43권2호
    • /
    • pp.319-325
    • /
    • 2019
  • Background: Ginsenoside Rf is a ginseng saponin found only in Panax ginseng that affects lipid metabolism. It also has neuroprotective and antiinflammatory properties. We previously showed that Korean Red Ginseng (KRG) inhibited the expression of cyclooxygenase-2 (COX-2) by hypoxia via peroxisome proliferator-activated receptor gamma ($PPAR{\gamma}$). The aim of the current study was to evaluate the possibility of ginsenoside Rf as an active ingredient of KRG in the inhibition of hypoxia-induced COX-2 via $PPAR{\gamma}$. Methods: The effects of ginsenoside Rf on the upregulation of COX-2 by hypoxia and its antimigration effects were evaluated in A549 cells. Docking of ginsenoside Rf was performed with the $PPAR{\gamma}$ structure using Surflex-Dock in Sybyl-X 2.1.1. Results: $PPAR{\gamma}$ protein levels and peroxisome proliferator response element promoter activities were promoted by ginsenoside Rf. Inhibition of COX-2 expression by ginsenoside Rf was blocked by the $PPAR{\gamma}-specific$ inhibitor, T0070907. The $PPAR{\gamma}$ inhibitor also blocked the ability of ginsenoside Rf to suppress cell migration under hypoxia. The docking simulation results indicate that ginsenoside Rf binds to the active site of $PPAR{\gamma}$. Conclusions: Our results demonstrate that ginsenoside Rf inhibits hypoxia induced-COX-2 expression and cellular migration, which are dependent on $PPAR{\gamma}$ activation. These results suggest that ginsenoside Rf has an antiinflammatory effect under hypoxic conditions. Moreover, docking analysis of ginsenoside Rf into the active site of $PPAR{\gamma}$ suggests that the compound binds to $PPAR{\gamma}$ in a position similar to that of known agonists.

랭뮤어-쉐퍼 기법 이용 생체모사 폴리도파민-산화그래핀 복합체 대면적 적층 기법 연구 (Large Area Deposition of Biomimetic Polydopamine-Graphene Oxide Hybrids using Langmuir-Schaefer Technique)

  • 김태호;송석현;조경일;구자승
    • 접착 및 계면
    • /
    • 제20권3호
    • /
    • pp.110-115
    • /
    • 2019
  • 그래핀으로 박리시키기 위한 한 가지 방법으로 산화그래핀이 많은 관심이 집중되고 있다. 산화그래핀의 산화그룹은 다양한 기능기와 수소결합을 시킬 수 있어 여러 응용분야에 이를 적용시키기 위한 연구가 활발히 진행되고 있다. 하지만 산화그래핀 자체만으로는 실질적으로 응용에 요구되어지는 기계적 물성을 만족시킬 수 없다. 따라서 본 연구에서는 홍합 단백질을 생체모사한 폴리도파민을 이용하여 산화그래핀과 결합시키고 액체-기체 계면에서 대면적의 복합체막을 형성 시켰다. 또한 폴리도파민-산화그래핀 복합체 박막의 모폴로지 구조도 제어하여 나노 링클 구조를 가지는 복합체 막을 얻었다. 기계적으로 우수하며 정교한 나노 구조를 형성할 수 있어 차세대 해수담수화 멤브레인 또는 탄소 복합재료에 이용될 수 있을 것으로 기대될 수 있다.

Poly-N-acetyllactosamine (poly-LacNAc) 합성에 관여하는 돼지 β-1,3-N-acetylglucosaminyltransferase I (pB3GNT1) 유전자 동정 (Identification of the Pig β-1,3-N-acetylglucosaminyltransferase 1 (pB3GNT1) that is Involved in Poly-N-acetyllactosamine (poly-LacNAc) Synthesis)

  • 김지윤;황환진;정학재;신이치 호치;박미령;변승준;오건봉;양현;김경운
    • 생명과학회지
    • /
    • 제28권4호
    • /
    • pp.389-397
    • /
    • 2018
  • 당 단백질에 붙어 있는 당사슬 구조는 형질전환 돼지 유즙으로 분비되는 의약용 단백질의 생물학적 활성, 안정성 그리고 안전성에 영향을 줄 수 있다. 형질전환 동물을 이용한 치료용 당 단백질 생산은 유선 세포에서 이루어지는 당사슬 부가능력에 의해 제한되며, 균일한 당사슬 형태를 가지는 당 단백질 생산은 도전 과제로 남아있다. ${\beta}$-1,3-N-acetylglucosaminylatransferase1 (B3GNT1) 유전자는 N-아세틸글루코사민에 갈락토오스 잔기를 부착시키는 단백질 당화기작에 중요한 효소이지만, 돼지 당 전이효소에 대한 정보는 매우 제한적이다. 따라서, 돼지 B3GNT1 (pB3GNT1) 유전자를 클로닝하고 N-아세틸글루코사민에 갈락토오스 잔기를 부착시키는 기능적 특성을 조사하였다. 몇가지 다른 프라이머를 사용하여 전체 전사영역(ORF)을 함유하는 부분적인 pB3GNT1 mRNA 염기서열을 간 조직으로부터 분리하였다. 클로닝 된 pB3GNT1의 ORF는 1,248개의 뉴클레오티드를 가지며, 415개 아미노산 잔기로 구성되어 있었다. pB3GNT1 유전자의 장기별 발현특성은 성돈 및 자돈의 여러 기관에서 분석하였다. pB3GNT1 mRNA 발현 수준은 심장, 소장 보다는 근육에서 높았지만 폐에서는 낮았다. pB3GNT1의 기능적 특성 분석을 위해 돼지 신장 세포주(PK-15)에서 pB3GNT1 유전자의 안정적인 발현을 확립하였다. 그 결과, PK-15 세포에서 pB3GNT1 발현에 의한 당화 패턴은 총 시알산 증가에는 영향을 미치지 않지만, poly-N-아세틸글루코사민은 증가하는 것으로 나타났다. 본 연구는 생물반응기로 형질전환 돼지를 이용할 때 희망하는 당사슬을 부가하여 치료 가능성을 높이며 개선된 활성을 나타내는 당단백질 생산에 도움이 될 것이다.