• Title/Summary/Keyword: functional potato

Search Result 82, Processing Time 0.032 seconds

RNAi-Mediated Gene Silencing of Trcot1 Induces a Hyperbranching Phenotype in Trichoderma reesei

  • Gao, Fei;Li, Mengzhu;Liu, Weiquan;Bai, Yingguo;Tao, Tu;Wang, Yuan;Zhang, Jie;Luo, Huiying;Yao, Bin;Huang, Huoqing;Su, Xiaoyun
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.2
    • /
    • pp.206-215
    • /
    • 2020
  • Trichoderma reesei is the major filamentous fungus used to produce cellulase and there is huge interest in promoting its ability to produce higher titers of cellulase. Among the many factors affecting cellulase production in T. reesei, the mycelial phenotype is important but seldom studied. Herein, a close homolog of the Neurospora crassa COT1 kinase was discovered in T. reesei and designated TrCOT1, which is of 83.3% amino acid sequence identity. Functional disruption of Trcot1 in T. reesei by RNAi-mediated gene silencing resulted in retarded sporulation on potato dextrose agar and dwarfed colonies on minimal medium agar plates containing glucose, xylan, lactose, xylose, or glycerol as the sole carbon source. The representative mutant strain, SUS2/Trcot1i, also displayed reduced mycelia accumulation but hyperbranching in the MM glucose liquid medium, with hyphal growth unit length values decreased to 73.0 ㎛/tip compared to 239.8 ㎛/tip for the parent strain SUS2. The hyperbranching phenotype led to slightly but significantly increased cellulase secretion from 24 to 72 h in a batch culture. However, the cellulase production per unit of mycelial biomass was much more profoundly improved from 24 to 96 h.

Isolation and identification of a tricin 4"-O-(threo-β-guaiacylglyceryl) ether producing microorganism from germinated rice (발아 벼로부터 tricin 4"-O-(threo-β-guaiacylglyceryl) ether 생성균주의 분리 및 동정)

  • Yoon, Nara;Jang, Gwi Yeong;Lee, Yoon Jeong;Li, Meishan;Kim, Min Young;Kim, Hyun Young;Lee, Junsoo;Jeong, Heon Sang
    • Korean Journal of Food Science and Technology
    • /
    • v.48 no.4
    • /
    • pp.361-365
    • /
    • 2016
  • This study was conducted to isolate and identify a microorganism that increases tricin-O-(threo-${\beta}$-guaiacylglyceryl) ether (TTGE) content in the hulls of rice (Oryza sativa L.). Bacteria from germinated rice were isolated by enrichment cultivation using yeast mold, luria bertani, potato dextrose and mannitol egg york polymyxin broths. The highest increase in TTGE content ($339.30{\mu}g/g$) was achieved by a microorganism isolated by PDA enrichment cultivation. On the basis of 16S RNA sequence homology and phylogenetic analysis, the isolated bacterium was identified to have 100% similarity with Burkholderia vietnamiensis. The isolated bacteria were short rods, negative for the Gram stain, and positive for the catalase test. The highest TTGE level was $435.86{\mu}g/g$ in 72-h fermented samples, representing a 2.5x increase compared with the control ($175.65{\mu}g/g$). In conclusion, the bacterium isolated from germinated rice extract was Burkholderia vietnamiensis, and the optimum fermentation period to maximize TTGE levels was 72 h. These findings might help in developing functional materials using rice hulls, a waste product of rice milling.

Optimal Culture Conditions for Penicillium rubefaciens NNIBRFG5039 Possessing Antimicrobial Activity (항균활성 보유 Penicillium rubefaciens NNIBRFG5039의 최적배양 조건)

  • Hwang, Hye Jin;Mun, Hye Yeon;Hwang, Buyng Su;Nam, Young Ho;Chung, Eu Jin
    • The Korean Journal of Mycology
    • /
    • v.48 no.1
    • /
    • pp.15-27
    • /
    • 2020
  • In screening for antimicrobial activity against methicillin-resistant Staphylococcus aureus (MRSA) KCCM 40510 and Bacillus cereus KCTC 3624, NNIBRFG5039 was isolated from the air in Sangju-si, Gyeongsangbuk-do. Based on a high sequence similarity of the internal transcribed spacer (ITS) region, NNIBRFG5039 was determined to be closely related to Penicillium rubefaciens CBS 139145. The optimal media, initial pH, and temperature for mycelial growth and antimicrobial activity of P. rubefaciens NNIBRFG5039 were determined as follows: potato dextrose broth (PDB), pH 6.5, and 30℃, respectively. Under the optimal culture conditions, maximum mycelial growth (12.4 g L-1) and antibacterial activity (7.5 mm zone of inhibition against MRSA KCCM 40510, and 5.0 mm zone of inhibition against B. cereus KCTC 3624) were observed in a 5 L stirred-tank fermenter. We also isolated the antimicrobial compound from an ethyl acetate fraction, and its chemical structure was identified as (S)-6-hydroxymellein (1) by ESI-MS, 1H-NMR, and 13C-NMR. Consequently, the extract from P. rubefaciens NNIBRFG5039 may be used in functional materials for antimicrobial-related applications.

Inhibitory Effects of Sargassum thunbergii Ethanol Extract against α-amylase (지충이 에탄올 추출물의 α-amylase 저해활성)

  • Lee, So-Jeong;Song, Eu-Jin;Kim, Koth-Bong-Woo-Ri;Lee, Chung-Jo;Jung, Ji-Yeon;Kwak, Ji-Hee;Choi, Moon-Kyoung;Kim, Min-Ji;Kim, Tae-Wan;Ahn, Dong-Hyun
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.43 no.6
    • /
    • pp.648-653
    • /
    • 2010
  • This study was performed to investigate the inhibitory activity of Sargassum thunbergii (ST) against ${\alpha}$-amylase and elucidate the availability of ST extract as a functional food agent. To test the inhibitory activity of ST against ${\alpha}$-amylase, porcine pancreatic ${\alpha}$-amylase and potato starch were used as substrates. It was revealed that ST crude ethanol extracts have high ${\alpha}$-amylase inhibitory activity. Subsequently, ST crude ethanol extract was separated into five partition layers by solvent extraction: n-hexane, chloroform, ethyl acetate, butanol, and water. Chloroform and n-hexane fractions showed higher inhibitory activities than did acarbose (positive control). To confirm the changes in enzyme inhibitory activity by physical treatments, ST crude ethanol extract was subjected to heat, pH, and ${\gamma}$-irradiation treatments. In all heat treatments with the exception of one ($121^{\circ}C$, 15 min), the inhibitory activity was increased compared with the untreated group. With regard to pH stability, ST extract showed no significant changes at pH 4.6, but somewhat decreased inhibitory activity was revealed at pH 2, 8, and 10. On the other hand, ST ethanol extract was stable under ${\gamma}$-irradiation under all conditions (3.20 kGy). In summary, ST ethanol extract can be used in the food industry as a natural ${\alpha}$-amylase inhibitor.

Purification and Characterization of the Siderophore from Bacillus licheniformis K11, a Multi-functional Plant Growth Promoting Rhizobacterium. (다기능 PGPR균주 Bacillus licheniformis K11이 생산하는 항진균성 Siderophore의 정제와 특성)

  • Woo, Sang-Min;Woo, Jae-Uk;Kim, Sang-Dal
    • Microbiology and Biotechnology Letters
    • /
    • v.35 no.2
    • /
    • pp.128-134
    • /
    • 2007
  • Previously, we isolated plant growth promoting rhizobacterium (PGPR) Bacillus licheniformis K11 which could produce auxin, cellulase and siderophore. The siderophore of B. licheniformis K11 $(siderophore_{K11})$ was determined to be a catechol type siderophore which is produced generally by Bacillus spp. B. licheniformis K11 could produce the siderophore most highly after 96 h of incubation under nutrient broth at $20^{\circ}C$ with initial pH 9.0. For the production of the $siderophore_{K11}$, trehalose and $NH_4Cl$ were the best carbon and nitrogen sources in Davis minimal medium, respectively. The $siderophore_{K11}$ was Produced in M9 medium (pH 9.0) after 4 days at $20^{\circ}C$, and purified from culture broth of B. licheniformis K11 by using Amberlite XAD-2, Sephadex LH-20 column chromatography, and reversed-phase HPLC. The $siderophore_{K11}$ had the biocontrol activity against spore germination of P. capsici and F. oxysporum on potato dextrose agar (PDA). The results indicate that the $siderophore_{K11}$ is an antifungal mechanism of B. licheniformis K11 against phytopathogenic fungi.

Antimicrobial Effects and Antioxidative Activities of the Cosmetic Composition Having Natural Plant Pigments (천연색소 함유 화장료 조성물의 항균효과 및 항산화활성)

  • Boo, Hee-Ock;Shin, Ji-San;Hwang, Sung-Jin;Bae, Chun-Sik;Park, Su-Hyun
    • Korean Journal of Plant Resources
    • /
    • v.25 no.1
    • /
    • pp.80-88
    • /
    • 2012
  • This study was conducted to clarify the antimicrobial effects and radical scavenging activities of the cosmetic compositions having the natural plant pigments, and to enhance the natural materials utilization of cosmetics. The antimicrobial activities of the fifteen kinds of cosmetic composition having natural plant pigments were evaluated using the agar diffusion method. Most of the cosmetic composition having the natural pigments showed the clear zone formation of growth inhibition against Bacillus subtilis, Staphylococcus aureus, Listeria monocytogenes, Vibrio parahaemolyticus and Aspergillus flavus. Especially, purple sweet potato, bitter melon, mulberry leaf and gromwell showed the higher antimicrobial activities. All the cosmetic compositions were evaluated for their antioxidant activity using DPPH radical scavenging capacity and nitrite scavenging ability activity. Both of the free radical DPPH and nitrite scavenging ability was the highest in the cosmetic compositions of onion peel, and these antioxidant activity was significant differences according to different plant pigments. In this study, we conjectured that the plant pigment had the potent biological activities, therefore these plant resources having functional components could be a good materials for development into source of natural cosmetics.

Isolation and Determination of Phenolic Compounds from Tuber of Color-fleshed and White-fleshed Potatoes

  • Nam, Jung Hwan;Hong, Su Young;Kim, Su Jeong;Sohn, Hwang Bae;Kim, Yul Ho;Park, Young Eun;Lee, Kyung Tea;Park, Soo jin;Lee, Jae Kwon
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2019.10a
    • /
    • pp.54-54
    • /
    • 2019
  • Color-fleshed potatoes 'Hong-young' and 'Ja-young' were developed by RDA, and it has reported that they have high content of anthocyanin. Additionally they show higher radical scavenging activity compared to white or yellow fleshed potatoes. So it will be expected that the consumption of color-fleshed potatoes gradually increase by pre-peeled potatoes and color potato chips. This study was conducted to enhance the utilization of the tuber of color-fleshed potatoes. At first, we isolated four compounds from the organic solvents soluble layer in ethanol extract of tuber, and their structures were characterized by spectroscopic methods and by comparing their data to those in the literature. Their structures were characterized to be caffeic acid (1), chlorogenic acid (2), gallic acid (3) and protocatechuic acid (4) for the first time reported from this source. These compounds were already reported ingredients but considered to exhibit a high physiological activity. The quantitative determination on the four compounds in tuber of color-fleshed [Hong-young (HY) & Ja-young (JY)] and white-fleshed [Superior (SP)] potatoes samples were measured using HPLC. The concentration of caffeic acid in each total fractionations of HY (184.4 g/g) and JY (435.1 g/g) were higher than in total fractionation of SP (31.1). The concentration of gallic acid in each total fractionations of HY (282.1 g/g) and JY (315.2 g/g) were higher than in total fractionation of SP (143.3 g/g). The concentration of chlorogenic acid contents appeared to be highest in total fractionation of SP (954.2 g/g). The concentration of protocatechuic acid in total fractionation of HY (120.3 g/g) was higher than in each total fractionationss of JY (74.4 g/g) and SP (102.7 g/g). Overall, color-fleshed potatoes had higher amount of physicochemical properties than 'Superior'. Therefore, color-fleshed potatoes are expected to be highly valuable items for the development and applications of a functional food. In addition, these results will provide fundamental information for improving sitological value, and breeding of new cultivar.

  • PDF

Effect of Light Wavelengths on the Mycelial Browning of Lentinula edodes Strain Sanjo 701ho (광 파장이 표고 품종 산조 701호 균사의 갈변에 미치는 영향)

  • Seo, Dong-Seok;Koo, Chang-Duck
    • The Korean Journal of Mycology
    • /
    • v.47 no.1
    • /
    • pp.63-73
    • /
    • 2019
  • Mycelial browning, which protects the organism from contamination and moisture loss, is essential for sawdust cultivation of Lentinula edodes. The effects of light and light wavelengths on the mycelial browning of the L. edodes Sanjo 701ho strain, and the characteristics of its brown hyphae, were investigated. After the mycelia were cultured on potato dextrose agar medium under fluorescent lamps covered with colored cellophane filters (red, green, and blue) or under light emitted diodes (LED), with wavelengths ranging from 400 to 700 nm (far-red, red, green, and blue), for 14 h per day for 40 days, the mycelial browning rate was measured. The wavelength of fluorescent lamps, which range from 300 to 1,100 nm, was reduced to 360 to 1,022 nm with the use of three colored cellophane filters and the photosynthetic photon flux density was reduced by 42 to 71 % depending on the light wavelength. The browning rate by colony area of mycelia exposed to light was at an average of 64 %, whereas, that of unexposed mycelia was only 5 %. The browning rate was 0.02 % in far-red, 1.5 % in red, 53.8 % in green, 57.3 % in blue, and 64.0 % in fluorescent light. The white mycelia were resilient with actively growing hyphae, filled with cytoplasm, and thin cell walls less than $1{\mu}m$ thick. Conversely, the brown mycelia possessed dead, hard hyphal structures without cytoplasm, but with approximately $2-4{\mu}m-thick$-thick cell walls. In conclusion, lights of varying wavelengths, especially short-wavelength LEDs, are effective for forming dead, brown mycelia of L. edodes, thus, forming a protective functional layer for its living white mycelia.

Effect of hot-air drying temperature on nutritional components and rehydration rate of sweetpotato leaves (열풍건조 온도에 따른 고구마 잎의 영양성분 및 수화복원성 변화)

  • Jeong, Da-Woon;Park, Yang-Kyun;Nam, Sang-Sik;Han, Seon-Kyeong
    • Food Science and Preservation
    • /
    • v.22 no.4
    • /
    • pp.498-504
    • /
    • 2015
  • The purpose of the present study is to provide preliminary data for turning sweetpotato leaves into dehydrated vegetables. To achieve this goal, we have gone through the process of hot-air drying the leaves of sweetpotato that are usually thrown away and examined the drying speed and rehydration resilience, then made a comparative analysis of the general ingredients, lutein, $\beta$-carotene and chromaticity. The drying speed reached the peak at a temperature of $70^{\circ}C$. As for other general ingredients, there was no significant difference according to temperature. The content of lutein, which is a functional ingredient, was large in Shinmi with $171.59{\mu}g/g$ at a temperature of $40^{\circ}C$; small in Hayanmi with $73.75{\mu}g/g$ at a temperature of $70^{\circ}C$. The content of $\beta$-carotene was large in Shinmi with $379.59{\mu}g/g$ at a temperature of $40^{\circ}C$; small in Hayanmi with $170.78{\mu}g/g$ at a temperature of $70^{\circ}C$. The content of functional materials was the largest at a temperature of $40^{\circ}C$, and decreased in the order of temperatures at $50^{\circ}C$, $60^{\circ}C$, and $70^{\circ}C$. As for rehydration stability, rehydration rate in both Shinmi and Hayanmi was the highest at a temperature of $40^{\circ}C$ with 233.93% and 223.47% respectively. To summarize, the quality of dried sweet potato leaf was more affected by temperature than by drying time, and low temperature drying resulted in better product value.

Vitamin B5 and B6 Contents in Fresh Materials and after Parboiling Treatment in Harvested Vegetables (채소류의 수확 후 원재료 및 데침 처리에 의한 비타민 B5 및 B6 함량 변화)

  • Kim, Gi-Ppeum;Ahn, Kyung-Geun;Kim, Gyeong-Ha;Hwang, Young-Sun;Kang, In-Kyu;Choi, Youngmin;Kim, Haeng-Ran;Choung, Myoung-Gun
    • Horticultural Science & Technology
    • /
    • v.34 no.1
    • /
    • pp.172-182
    • /
    • 2016
  • This study was aimed to determine the changes in vitamin $B_5$ and $B_6$ contents compared to fresh materials after parboiling treatment of the main vegetables consumed in Korea. The specificity of accuracy and precision for vitamin $B_5$ and $B_6$ analysis method were validated using high-performance liquid chromatography (HPLC). The recovery rate of standard reference material (SRM) was excellent, and all analysis was under the control line based on the quality control chart for vitamin $B_5$ and $B_6$. The Z-score for vitamin $B_6$ in food analysis performance assessment scheme (FAPAS) proficiency test was -1.0, confirming reliability of analytical performance. The vitamin $B_5$ and $B_6$ contents in a total of 39 fresh materials and parboiled samples were analyzed. The contents of vitamin $B_5$ and $B_6$ ranged from 0.000 to 2.462 and from 0.000 to $0.127mg{\cdot}100g^{-1}$, respectively. The highest contents of vitamin $B_5$ and $B_6$ were $2.462mg{\cdot}100g^{-1}$ in fresh fatsia shoots (stem vegetables), and $0.127mg{\cdot}100g^{-1}$ in fresh spinach beet (leafy vegetables), respectively. Moreover, the vitamin $B_5$ and $B_6$ contents for parboiling treatment in most vegetables were reduced or not detected. In particular, the contents of vitamin $B_5$ in parboiled fatsia shoots and vitamin $B_6$ in parboiled yellow potato and spinach beet were decreased 20- and 4-fold compared with fresh material, respectively. These results can be used as important basic data for utilization and processing of various vegetable crops, information for dietary life, management of school meals, and national health for Koreans.