• Title/Summary/Keyword: functional potato

Search Result 82, Processing Time 0.028 seconds

Nucleotide Sequence of a Truncated Proteinase Inhibitor I Gene of Potato (감자에서 분리된 절단형 단백질분해효소 억제제 I 유전자의 염기서열)

  • 이종섭
    • Journal of Plant Biology
    • /
    • v.33 no.4
    • /
    • pp.303-307
    • /
    • 1990
  • A genomic clone carrying a proteinase inhibitor I sequence was isolated and characterized. The clone contained a 0.7 kb EcoRI fragment hybridized with tomato inhibitor I cDNA. The nucleotide sequence of the EcoRI fragment revealed presence of a truncated form of a proteinase inhibitor I gene of potato. The truncated gene contained the 5' flanking region and the first exon of a functional proteinase inhibitor I gene. Although the 5' flanking region contained the regulatory sequences TATAAA and CCACT, a deletion of 40 bp occurred between them.

  • PDF

Qualities and Antioxidant Activity of Lactic Acid Fermented-Potato Juice (젖산 발효 감자주스의 품질 특성 및 항산화 활성)

  • Kim, Nam Jo;Yoon, Kyung Young
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.42 no.4
    • /
    • pp.542-549
    • /
    • 2013
  • This study was conducted to investigate the chemical properties and functionality of probiotic potato juice fermented by Lactobacillus casei. Free sugar content (especially glucose) of potatoes decreased by fermentation, but organic acid contents increased by fermentation. Although the free amino acid content of Superior juice significantly decreased after fermentation, Haryeong significantly increased after fermentation. ${\gamma}$-Aminobutyric acid, a functional amino acid, was detected at high levels in all samples and slightly decreased with fermentation, but not significantly. The total polyphenol content of potato juice showed insignificant changes in all samples by fermentation. The hydroxyl radical scavenging activity of all samples was more than 90%, and most of the activity was maintained after fermentation. The nitrite scavenging ability of all samples greatly decreased with fermentation; however a SOD-like activity slightly increased with fermentation, except for Haryeong. There was a significant xanthine oxidase inhibitory effect in fresh potato juice (more than 45%) and a low loss by fermentation. From our results, most of the chemical properties and functionality of potato juice are maintained after fermentation, although free sugar content and nitrite scavenging activity decline. Thus probiotic potato juice fermented by lactic acid could be used as a functional beverage.

The Dyeability of Silk Fabrics with Sweet Potato Stem·Leaf Extract (고구마 줄기·잎 추출액을 이용한 견직물의 염색성)

  • Hong, Bo Geun;Lee, Jeong Sook
    • Textile Coloration and Finishing
    • /
    • v.28 no.3
    • /
    • pp.219-229
    • /
    • 2016
  • The purpose of this study was to investigate the dyeability of silk fabrics with sweet potato stem leaf extract. To obtain the optimal dyeing conditions it was examined at various dyeing conditions(temperature, pH, time and bath ratio). The dyeability and the depths of shade which were evaluated in terms of K/S and CIELAB color difference values of the dyed and mordanted fabrics were also investigated. After dyeing, various color fastness(wash fastness, dry cleaning fastness, light fastness, rub fastness, and perspiration fastness) was measured and reviewed for UV protective, deodorant and antimicrobial functionality. The optimun output, as a result, was shown at 100% of dye concentration, $90^{\circ}C$ of dyeing temperature and 80 minutes of dyeing time while in terms of dye uptake depending on the kind of mordants and mordanting, it was found that among four mordants of $Alk(SO_4)_2$, $CuSO_4$, $SnCl_2$, and $FeSO_4$, post-mordanting with $SnCl_2$ showed the best results. Color fastness to dry cleaning, washing and rubbing was found strong at grade 4-5 and the grade to perspiration was as good as 3 while to light fastness was good at 4 as well. In aspects of functional properties, it showed excellent results of 98.3% UV protection rate and 88% deodorization rate. Antibacterial activity was 99.9% against staphylococcus aureus and 73.3% against klebisella pneumoniae. In conclusion, we validated that the dyestuffs from the disused sweet potato stem leaf extract would be useful as a natural dye material using the optimized conditions and dyeability for silk dyeing.

Food Composition of Raw, Boiled, and Roasted Sweet Potatoes (생고구마와 삶은 및 구운 고구마의 식품성분 비교)

  • Kim, Soyoung;Seo, Dongwon;Park, Jisoo;Kim, Se-na;Choi, Youngmin;Nam, Jin-sik;Lee, Jong-Hun;Kim, Sang-Cheon;Yang, Mi-Ok;Hwang, Jinbong
    • The Korean Journal of Community Living Science
    • /
    • v.28 no.1
    • /
    • pp.59-68
    • /
    • 2017
  • In this study, two kinds of chestnut-sweet potato (CSP) and pumpkin-sweet potato (PSP) were cooked by three methods: raw, steaming, and roasting. These samples were investigated in food compositions such as moisture, protein, ash, dietary fiber, fat, minerals, and vitamins. As the results of this study, the moisture contents of raw CSP and raw PSP were higher than those of steamed and roasted samples in two cultivars. The contents of protein in raw CSP and raw PSP were 2.57 g/100 g and 3.22 g/100 g, respectively, which were higher than those of other cultivars. The protein contents of roasted CSP and steamed PSP were lower than those of their raw samples. The potassium, phosphorus, magnesium, calcium, sodium, and iron values of PSP were 1,048.46 mg/100g, 152.02 mg/100g, 74.70 mg/100g, 57.22 mg/100g, 22.28 mg/100g, and 1.44 mg/100g, respectively, which were the highest values in tested sweet potato cultivars. The content of dietary fiber in CSP was higher generally than that in PSP. The values of total dietary fiber in cooked sweet potatoes were higher than those of raw sweet potatoes. The contents of vitamins, including thiamine, riboflavin, and niacin, in PSP were higher than those in CSP. Overall, two cultivars of raw, boiled, and roasted sweet potatoes had enhanced food composition. Therefore, these sweet potato cultivars are expected to be highly valuable food items for the development and application of functional foods.

Antioxidant Compounds and Antioxidant Activities of Sweet Potatoes with Cultivated Conditions (재배조건에 따른 고구마의 항산화성분 및 항산화활성)

  • Woo, Koan-Sik;Seo, Hye-In;Lee, Yong-Hwan;Kim, Hyun-Young;Ko, Jee-Yeon;Song, Seuk-Bo;Lee, Jae-Saeng;Jung, Ki-Yuol;Nam, Min-Hee;Oh, In-Seok;Jeong, Heon-Sang
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.41 no.4
    • /
    • pp.519-525
    • /
    • 2012
  • Effects of cultivated conditions on antioxidant compounds and antioxidant activities of sweet potatoes (Ipomoea batatas (L.) Lam) were determined. The cultivated variety was Shinyulmi, and they were cultivated in a conventional culture, successful cropped hairy vetch culture, successful cropped barley cultivation, successful cropped rye cultivation, successful cropped mix-seeding of hairy vetch and barley, successful cropped mix-seeding of hairy vetch and rye, and not fertilizer. The brix degree, moisture, protein, and ash content of the sweet potatoes did not significantly change with the cultivated conditions. However amylose, total dietary fiber, and mineral content had significant changes. The total polyphenol, flavonoid, and tannin content of the methanolic extracts of the sweet potato's pericarp showed significant differences from cultivated conditions, however, the sweet potato's sarcocarp did not significantly change. The highest DPPH and ABTS radical scavenging activities of the methanolic extracts of the sweet potatoes were 958.81 and 663.53 mg TE/100 g in the sweet potato's pericarp on the successful cropped hairy vetch culture. Generally, there was a difference in antioxidant compound content and radical scavenging activity on the methanolic extract of sweet potato with cultivated conditions.

Touch-induced gene (IbTCH1) from sweet potato [Ipomoea batatas (L.) Lam.]: molecular cloning and functional analysis

  • Seo, Sang-Gyu;Kim, Ji-Seong;Kang, Seung-Won;Shin, Mi-Rae;Yang, You-Sun;Lee, Gung-Pyo;Hong, Jin-Sung;Kim, Sun-Hyung
    • Plant Biotechnology Reports
    • /
    • v.2 no.4
    • /
    • pp.253-258
    • /
    • 2008
  • The cDNA of the touch-induced genes (TCH) of the sweet potato [Ipomoea batatas (L.) Lam.] has been cloned and analyzed. IbTCH1, which exists as at least two-copy genes in the genome of the sweet potato, encodes for 148-amino acid polypeptides, and harbors four conversed $Ca^{2+}-binding$ motif EF-hands. IbTCH1 was shown to be expressed in the flower, leaf, thick pigmented root, and particularly in the white fibrous root, but expressed only weakly in the petiole. IbTCH1 is upregulated upon exposure to environmental stresses, dehydration, and jasmonic acid. Furthermore, IbTCH1 is developmentally regulated in the leaf and root. These results strongly indicate that the gene performs functions in both plant development and in defense/stress-signaling pathways.

Establishment of Genetic Transformation System and Introduction of MADS Box Gene in Hot Pepper (Capsicum annuum L.)

  • Lim, Hak-Tae;Zhao, Mei-Ai;Lian, Yu-Ji;Lee, Ji-Young;Eung-Jun park;Chun, Ik-Jo;Yu, Jae-Woong;Kim, Byung-Dong
    • Journal of Plant Biotechnology
    • /
    • v.3 no.2
    • /
    • pp.89-94
    • /
    • 2001
  • In vitro plant regeneration of inbred breeding line of hot pepper (Capsicum annuum L.) was established using leaf and petiole segments as explants. About 28 days old plants were excised and cultured on MS medium supplemented with TDZ and NAA or in combination with Zeatin. In all of the media compositions tested, combination of TDZ 0.5 mg/L, Zeatin 0.5 mg/L, and NAA 0.1 mg/L was found to be the best medium for shoot bud initiation. Young petiole was the most appropriate explant type for the plant regeneration as well as genetic transformation in hot pepper. In this study, HpMADS1 gene isolated from hot pepper was introduced using Agrobacterium-mediated transformation system. Based on the analysis of Southern blot and RT-PCR, HpMADS1 gene was integrated in the hot pepper genome. It has been known that floral organ development is controlled by a group of regulatory factors containing the MADS domain. Morphological characteristics in these transgenic plants, especially flowering habit, however, were not significantly altered, indicating this MADS gene, HpMADS1 may be non-functional in this case.

  • PDF

Development of transgenic potato with high content of functional carotenoids by using metabolic engineering (대사공학기술을 이용한 기능성 carotenoids 고 생산 감자의 개발 현황)

  • Ahn, Mi-Jeong;Bae, Jung-Myung;Lee, Shin-Woo
    • Journal of Plant Biotechnology
    • /
    • v.37 no.4
    • /
    • pp.388-393
    • /
    • 2010
  • Recently, a number of successful research reports are accumulated to increase the carotenoid level in potato tuber such as $\beta$-carotene, precursor of vitamin A and keto-carotenoid like astaxanthin in which is not synthesized in most plants tissue since it does not contain a specific enzyme to add keto-ring in carotenoid molecule. In particular, keto-carotenoids are more interested due to their strong antioxidant activity. Currently, the content of $\beta$-carotene was increased up to 3,600-fold ($47\;{\mu}g/g$ dry weight) when compared to the control potato tuber, parental cultivar for genetic modification. In addition, astaxanthin, one of the major keto-carotenoid was accumulated up to $14\;{\mu}g/g$ dry weight in potato tuber with red color by over expressing the gene encoding $\beta$-carotene ketolase isolated from marine microorganisms. In this article, we summarized carotenogenesis-related genes that have been used for metabolic engineering of carotenoid biosynthetic pathway in potato. Furthermore, strategies for the accumulation of carotenoids and ketocarotenoids in specific potato tuber, bottle necks, and future works are discussed.

Quality and Antioxidant Properties of Fermented Sweet Potato Using Lactic Acid Bacteria (유산균을 이용한 발효 고구마의 품질 특성 및 항산화 활성)

  • Ha, Gi Jeong;Kim, Hyeon Young;Ha, In Jong;Cho, Sung Rae;Moon, Jin Young;Seo, Gwon Il
    • The Korean Journal of Food And Nutrition
    • /
    • v.32 no.5
    • /
    • pp.494-503
    • /
    • 2019
  • The purpose of this study was to investigate the quality and antioxidant properties of three fermented sweet potato cultivars (Shinyulmi, Hogammi, and Shinjami) using lactic acid bacteria. During the fermentation, the pH was lowered and the titratable acidity increased. The viable cell counts of lactic acid bacteria increased 8.44-9.62 log CFU/g. Organic acid content (especially lactic acid) of sweet potatoes increased by fermentation. Also, ${\gamma}$-Aminobutyric acid increased more than 8.6 times by fermentation in all samples. The total polyphenol and flavonoid contents of sweet potato, showed insignificant changes in all samples by fermentation. ABTS radical scavenging activity of all samples slightly decreased by fermentation, but not significantly. DPPH radical scavenging activity decreased slightly by fermentation except Shinyulmi. However, when compared with the varieties, Shinjami showed the highest activity. The reducing power of Shinjami decreased slightly by fermentation, but activity was the highest among all samples. Based on these results, most of the chemical properties and functionality of fermented sweet potato are retained after fermentation, although some antioxidant activity decreases. We suggest that three fermented sweet potato cultivars (Shinyulmi, Hogammi, and Shinjami) using lactic acid bacteria can be used in various applications because of their effective functional properties.

Isolation of Potato StACRE Gene and Its Function in Resistance against Bacterial Wilt Disease (감자유전자 StACRE의 분리 및 풋마름병 저항성 기능 검정)

  • Park, Sang-Ryeol;Cha, Eun-Mi;Kim, Tae-Hun;Han, Se-Youn;Hwang, Duk-Ju;Ahn, Il-Pyung;Cho, Kwang-Soo;Bae, Shin-Chul
    • Journal of Life Science
    • /
    • v.22 no.2
    • /
    • pp.177-183
    • /
    • 2012
  • Bacterial wilt (brown rot) caused by Ralstonia solanacearum (Rs) is one of the most devastating bacterial plant diseases in potatoes. To isolate bacterial wilt disease resistance-related genes from the potato, the StACRE (HM749652) gene was isolated and a sequenced search was performed using functional orthologs of Solanaceae from potatoes. StACRE is homologous to the tobacco NtACRE 132 protein and belongs to the ATL family involved in ubiquitination. To analyze the expression pattern of this gene, RT-PCR was performed with potato treated with salicylic acid (SA) and Rs (KACC 10722). StACRE was strongly induced 3 hours after treatment with SA and 12 hours after infection with Rs. To investigate its biological functions in the potato, we constructed a vector for overexpression in the potato by the Gateway system, and then generated transgenic potato plants. The gene expression of transgenic potato was analyzed by northern blot analysis. In the results of disease resistance assay in relation to bacterial wilt, StACRE overexpressed transgenic potato plants were shown to have more resistance than wild-type potato.