• Title/Summary/Keyword: functional fabric

Search Result 269, Processing Time 0.031 seconds

Sensibility Preference of Eco-Friendly Fabric Products and Trust Reliability (친환경 섬유의류 제품의 감성 선호도와 신뢰도 조사 연구)

  • Na, Young-Joo;Kim, Hyo-Won
    • Fashion & Textile Research Journal
    • /
    • v.14 no.3
    • /
    • pp.430-437
    • /
    • 2012
  • This study analyzed the sensibility of eco-friendly fabrics for college students and investigated their attitude on environmental problems, trust reliability onto eco-apparel products, and their purchase state. We tested 6 eco-friendly fabrics (recycled polyester, organic cotton, green tea, charcoal, bamboo, and nettle) through a survey using the Likert scale of 12 polar sensibility words. Most fabrics showed feelings that were smooth, natural, female, and country these were followed by fashion, cheap, functional, sustainable, warm, and vintage. In addition, nettle fabric showed 'rough' feeling, and recycled polyester fabric showed an 'artificial' feeling. Correspondence analysis showed the distance and direction between fabric types and sensibility words with a 2D diagram where the X axis was named with 'Soft <-> Hard' and Y axis was with 'Environmental <-> Manmade' to represent the relationship between fabric types and the sensibility words. According to the results of the multiple regression analysis, the cognition level of the consumer for environmental problems was found to be the most influential variable on the loyalty purchase of eco-friendly products; however, the trust reliability level of consumer onto eco-friendly apparel products was found to be the most influential variable on the conditional purchase of eco-friendly apparel products.

Changes in Absorbency and Drying Speed of a Quick-drying Knit Fabric by Repeated Laundering

  • Roh, Eui-Kyung;Kim, Eun-Ae
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.34 no.12
    • /
    • pp.2062-2072
    • /
    • 2010
  • This research evaluates the change of the water absorbency and drying speed of a quick-drying knit fabric by repeated laundering and laundering conditions and investigates the influence of laundering conditions on the functional properties of the knit fabric. Four factors of laundering conditions were studied: detergent, water hardness, water temperature, and frequency of rotation. Knit fabrics were washed for 25 laundering cycles in a drum-type washing machine with nine different laundering conditions derived from an orthogonal array. The properties of knit fabrics were measured with a drop absorption test, a strip test, and a drying time test. Relaxation shrinkage pointed to a change in the structural characteristics of the knit fabric. Wetting time was faster and wickability was greater in the knit fabrics that underwent 5 laundering cycles; in addition, there were no obvious changes in wetting time and wickability. The detergent was the most important factor in wetting time (40.4%) and wickability (60% or above). Water hardness, water temperature and RPM had less of an effect on wetting time and wickability. There were no significant differences between the levels of laundering conditions (except for detergent) on wetting time and wickability. Drying times with neutral and alkali were slower by repeated laundering; however, there was no obvious change in drying time. Hardness, water temperature and RPM had less of an impact on drying time.

A Study on the Fabric Trend and Characteristics of 1990's Women's wear (1990년대(年代) 국내(國內) 여성복(女性服) 소재경향(素材傾向)과 특성(特性)에 대(對)한 연구(硏究))

  • Ha, Jung-Won;Cho, Kyu-Hwa
    • Journal of Fashion Business
    • /
    • v.3 no.3
    • /
    • pp.69-78
    • /
    • 1999
  • The purpose of this thesis is to investigate of fabric characteristics in women's wear as reviewing the fabric trends in 1990's domestic fashion. As a method to accomplish this research, I have examined the articles related to fashion fabric and fashion trend magerzines. This study considered women's wear relatively used diverse fabrics, there was not previous study regarding the fabrics used in domestic, since the 1990's. The social fators for the 1990's fashion were the influence of the informed, the increased concern for the ecological environment, the sattlement of young popular culture, the increase of resonable consume and social anxiety. To understand the fashion trends of the 1990's women's wear, it is divided three periods. The traditional period is from 1991 to 1993, the mixed period of the naturalism and the technology is from 1994 to 1995, the retro period is from 1996 to 1999. The charateristics of the fabrics used in 1990's women's wear were the appearance of various functional fabrics, the development of new synthetic fabric with high sensitivity, the popularization of circular knit, the fabrics with a retro mood toward traditional feminine mood and the blending of fabrics. The fashion of 1990 have had the characteristics of various utilization of the materials on the base of reasonable and practical trends than the changes of design and detail.

  • PDF

Chemical Warfare Agent Simulant Decontamination of Chitosan Treated Cotton Fabric (키토산 처리 면직물의 군사용 화학 작용제 모사체 분해 연구)

  • Kwon, Woong;Han, Minwoo;Jeong, Euigyung
    • Textile Coloration and Finishing
    • /
    • v.32 no.1
    • /
    • pp.51-56
    • /
    • 2020
  • This study aims to pursue the multi-functional textile finishing method to detoxify chemical warfare agent by simply treating the well-known antimicrobial agent, chitosan, to cotton fabric. For this purpose, DFP(diisopropylfluorophosphate) was sele cted as a chemical warfare agent simulant and cotton fabric was treated with 0.5, 1.0, and 2wt% chitosan solution in 1wt% acetic acid. DFP decontamination properties of the chitosan treated cotton fabrics were evaluated and compared with the untreated cotton fabric. The chitosan treated cotton fabrics showed better DFP decontamination than the untreated cotton. Decontamination properties of the chitosan treated cotton fabrics improved with the increased chitosan solution used. Especially, the cotton fabrics treated with 2wt% chitosan solution showed 5 times more DFP decontamina tion than the untreated cotton fabrics. This suggested that the chitosan treated fabric has potential to be used as a material for protective clothing with chemical warfare agent detoxifying and antimicrobial properties.

Design of Illuminating Car Seats based on Woven Fabric of Optical Fiber

  • Song, HaYoung;Cho, Hakyung
    • Science of Emotion and Sensibility
    • /
    • v.17 no.1
    • /
    • pp.29-38
    • /
    • 2014
  • In recent days, according as ergonomics and aesthetic engineering are important factors in the product market, there is a demand to develop automobile seat and interior designs which are focused on sensitive elements such as aesthetic and comfort features in order to satisfy the sensitive needs of consumers. To meet such demands, car seats are turning into functional and sensitive products that reflect elements of function and entertainment. According to such trends, this research is aimed to develop the illuminating car seat fabric that serve such functions as recognizing and reacting to car environments, which includes sensing over-speed, open doors, and unfastened safety belts through the illuminating car seat fabrics by optical fiber. For this purpose, basic physical properties of optical fiber are analyzed, appropriate weaving and etching technologies are applied, and the woven fabric of optical fiber for car seats are illuminating depend upon car environments. Moreover, the applicable woven fabric of optical fiber is deduced after evaluating the physical properties (such as tensile strength, heatproof, anti-fouling, washable and combustible traits) for the appropriateness of applying the woven fabric of optical fiber to car seats. For this purpose, the woven fabric of optical fiber is covered according to car seat processes; the optical fiber applied to seats is composed that it may be connected to one end of the connector linked to a LED so that it may perform functions like sensing over-speed, open doors, and unfastened safety belts; the sensed signals are transmitted to the control part, and luminescent signals are transmitted to LED.

Method to Evaluate Fabric Contamination Due to Fine Dust (섬유소재의 미세먼지 오염도 평가 방법 개발에 관한 연구)

  • Hwang, So-Young;Kwon, Jin-Kyung;Kim, Young-Sil;Choi, Eun-Jin;Kim, Da-Jin;Kim, Min;Yook, Se-Jin
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.11
    • /
    • pp.86-91
    • /
    • 2021
  • Recently, functional clothes that can reduce deposition and/or penetration of fine dust have been developed. However, there are no methods to quantitatively evaluate the performance of these clothes. In this study, we developed a method to contaminate a fabric using fine dust and established an approach to quantitatively assess the degree of particle contamination on the fabric surface. Silicate powder was chosen as the particle to simulate fine dust because silicate particles are fluorescent under UV light; therefore, they can be distinguished from any color of non-fluorescent fabric surface. A camera with a high-resolution lens system was used to scan the surface of the contaminated fabric surface, and the degree of particle contamination of the fabric surface was analyzed in terms of the pixels corresponding to the area of the fabric surface contaminated by silicate particles. Finished or unfinished nylon fabrics as well as cotton fabrics were contaminated with silicate particles, and their surfaces were scanned using the established camera. The proposed assessment method was found to be useful for quantitatively comparing the degree of particle contamination of the fabrics.

Research on the dyeability and functional property of citrus peel extract as a natural dye (감귤박 추출액을 이용한 천연염료로의 염색성 및 기능성 평가에 관한 연구)

  • Kim, Kihoon;Kim, Haegong;Lim, Hyuna
    • The Research Journal of the Costume Culture
    • /
    • v.22 no.3
    • /
    • pp.431-439
    • /
    • 2014
  • This research verified the usefulness and practicality of citrus peel extract as a natural dye. This study dyed cotton, silk, and cotton/mulberry fiber blended fabrics using citrus peel extract, and measured the dyeability and functional property to verify their usefulness and practicality. The dyeing affinity of the citrus peel extract was measured by dyeing under alkaline conditions to determine the temperature and time for optimal dyeing conditions of the solution. The results show that a temperature and time of $60^{\circ}C$ and 30 minutes were optimal for dyeing cotton fabrics with citrus peel extract, $50^{\circ}C$ and 60 minutes for silk fabrics, and $60^{\circ}C$ and 60 minutes for cotton/mulberry fiber blended fabrics, respectively. In addition the results of measuring the color fastness of the cotton, silk, and cotton/mulberry fiber blended fabrics dyed with the citrus peel extract show that the color fastness was superior for washing, friction, sweat, and water. However, the color fastness for sunlight appeared to be slightly weak. In addition, it was found that fabric dyed with the citrus peel extract showed partial antimicrobial properties. The antimicrobial property appeared the greatest in the silk fabric. The cotton/mulberry fiber blended fabrics had 90% or more Staphylococcus aureus present, but the antimicrobial properties were not high in the cotton fabric. Additionally, the heavy metal content, which is harmful to the human body, appeared to be lower than standard figures, so the dye was found to be innocuous to humans. Therefore, when the results of this study are put together, citrus peel extract is sufficiently useful and practical as an ingredient for a natural dye. Moreover, there is ample possibility to develop citrus peel dyed fabrics as environmentally friendly fashion materials.

A Study on the Functional Design Elements for Children's Ski Pants (아동용 스키 팬츠의 기능적 설계요소 연구)

  • Kyungok Kim;Jongsuk Chun
    • Fashion & Textile Research Journal
    • /
    • v.25 no.2
    • /
    • pp.199-209
    • /
    • 2023
  • This study identified design elements of the functions required for children's ski pants. Data for this study were collected through questionnaire surveys conducted among children's ski instructors and children's sportswear developers. Five functionalities of children's skiwear were evaluated: mobility, stability, comfort, protection, and convenience. A total of 25 functional design elements related to the patterns, design details, and physical characteristics of fabrics for ski garments, were evaluated. The results of this study are as follows. First, children's sportswear developers evaluated that the pattern elements were important. Most of the pattern design elements highly related to mobility. Children's ski instructors' appraisal was that the height of the back waist was the important feature. Second, regarding the design details, children's ski instructors evaluated the size adjustment function and ventilation system as important elements. Many design detail elements were highly related in respect of stability, comfort, protection, and convenience. Third, the physical characteristics of fabric were strongly associated with mobility, comfort, and protection. As regards the physical characteristics of fabric, children's ski instructors valued anti-fouling highly, but children's sportswear developers attached more importance to the weight of the fabric. The results of this study will be useful in designing functional ski pants for children of elementary and intermediate ski levels. Since there may be limitations related to the ski level and age of children wearing ski pants, it is suggested that follow-up studies according to various groups of the ski pant wearers should be done.

Flexible Energy-storage Devices: Maneuvers and Intermediate Towards Multi-functional Composites

  • Son, Ji Myeong;Oh, Il Kwon
    • Composites Research
    • /
    • v.31 no.6
    • /
    • pp.355-364
    • /
    • 2018
  • Flexible energy-storage devices (FESDs) have been studied and developed extensively over the last few years because of demands in various fields. Since electrochemical performance and mechanical flexibility must be taken into account together, different framework from composition of conventional energy-storage devices (ESDs) is required. Numerous types of electrodes have been proposed to implement the FESDs. Herein, we review the works related to the FESDs so far and focus on free-standing electrodes and, especially substrate-based ones. The way to utilize carbon woven fabric (CF) or carbon cloth (CC) as flexible substrates is quite simple and intuitive. However, it is meaningful in the point of that the framework exploiting CF or CC can be extended to other applications resulting in multifunctional composites. Therefore, summary, which is on utilization of carbon-based material and conductive substrate containing CF and CC for ESDs, turns out to be helpful for other researchers to have crude concepts to get into energy-storage multi-functional composite. Moreover, polymer electrolytes are briefly explored as well because safety is one of the most important issues in FESDs and the electrolyte part mainly includes difficult obstacles to overcome. Lastly, we suggest some points that need to be further improved and studied for FESDs.

A Study on Workwear Prototype Development: Based on the Functional, Expressive, Aesthetic (FEA) Model

  • Huh Ga Young
    • Journal of Fashion Business
    • /
    • v.27 no.6
    • /
    • pp.37-46
    • /
    • 2023
  • This study aims to develop workwear prototypes by applying a systematic approach considering the characteristics of workwear. A case study was conducted before this study to derive workwear's four characteristics: 'Ergonomic Pattern-Making, Certified Fabric, Specialized Color, and Customized Details.' a prior study proposed the integrated framework combining these characteristics with the FEA model. The new framework identified that these characteristics are considered in terms of functionality, expression, and aesthetics; it can increase workers' satisfaction and meet the market demand without concentrating on only particular aspects. Before prototype production, the requirements for each characteristic of workwear were analyzed through theoretical research of previously published related papers. The study primarily gathered workwear requirements data and sources from consumer satisfaction surveys and investigations into the wearing conditions of work clothes. When considering all aspects of pattern-making, fabric, color, and detail in functionality, 'comfort movement, body protection, improved work efficiency' were identified as necessary. Expressive requirements were fundamental, including 'reflecting the wearer's preferences, expressing a sense of belonging and identity. It was clear that incorporating design elements and applying current trends to the aesthetic requirements of work clothes was necessary. Four prototypes comprised two top and bottom sets and two overalls using these requirements. The framework was used throughout the entire process of planning, producing, and evaluating prototypes, and through this, the results fulfilled the requirements. This study is significant because it produced workwear prototypes using an integrated approach that considered functional, expressive, and aesthetic aspects.