• Title/Summary/Keyword: functional element

Search Result 646, Processing Time 0.027 seconds

Formative Expressions by Artificial Light applied to Office Building Lobbies (현대 오피스 로비공간에서 빛의 조형적 표현 특성에 관한 연구)

  • Jeong, Soo-Ryun
    • Korean Institute of Interior Design Journal
    • /
    • v.18 no.2
    • /
    • pp.41-49
    • /
    • 2009
  • Contemporary design environment is formed with image-centered trend based on pluralism. In this point of view, enterprises' building lobbies are public places containing the equivocal meaning, actively utilizing light as a design element to express the image of enterprises' identifications. Light is an immaterial entity having unlimited possibilities and potentials on space. It also acts as media to activate spaces and create new images in connection with formative elements of space. This study is to figure out how lightings are expressed and affected the formative characteristics of office lobby spaces and activate the specific characteristics of spaces. As a result, we drew conclusions as follows. First, as state-of-the-art technology and media are introduced, light is expressed on spaces as floating, direction, rhythm, silhouette, metaphor and allusion, sense of depth and volume. Second, expressive aspects of light in lobby space are embodiment of light, substantiation of immateriality, standing of materiality from the perspective of spatial aesthetics, and distortion/transformation of shape, pluralism phenomena of space from the perspective of spatial structure. In this way, light on building lobbies which are greatly required design differentiation strategy, specializes space and also integrates all the designs as not only a functional element but also a mental, psychological, formative element. Consequently, light on lobby spaces induces communication between spaces and users, makes formative value of existence in itself, and presents the characteristics of differentiated enterprises' identities.

A Study on Classification and Preference of Physical Features in Front Plaza of Department Store (백화점 전면광장의 물리적 특성 유형화 및 선호도 연구)

  • 정용문;김중재;변재상
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.32 no.3
    • /
    • pp.91-105
    • /
    • 2004
  • Recently the function of a department store has changed to the concept of a multi-functional center because of the alternative stores such as discount stores, home shopping, and internet shopping. This means that the front plaza of a department store is not a personal or private space any more, but a public space. This study focuses on the special character of public space through the classification and preference types of department store front plazas. The major results of this study can be summarized as follows: (1) Components of front plaza of department store are classified by three factors. The first factor, named "space limit", has 14 elements ; the second, named "space decoration" has 16 elements ; third, named "activity", has 2 elements. The first preferred element is easily- used and easily- serviced wide space. The second preferred element is the equipment that is placed linearly along the street. The third preferred element is cultural events. (2) The comparison between the frequency and preference shows that the plazas could not satisfy the user-needs. (3) Preference factors of front plazas were examined to three characters such as familiarity, peculiarity, and openness. Familiarity, peculiarity, openness have a positive correlation in all types. Peculiarity especially influences the other two space - preference factors.

Study on the Retraction of Anterior Teeth for the Lingual Orthodontics with the Three-Dimensional Finite Element Method (유한요소법을 이용한 설측 치아교정시 전치부 후방견인에 관한 연구)

  • Song Jung-Han;Huh Hoon;Park Hyun-Sang
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.8 s.227
    • /
    • pp.1237-1244
    • /
    • 2004
  • The orthodontic surgery including lingual orthodontics has recently attracted a person's attention due to its functional and esthetic appreciation. The skeletal anchorage with the miniscrew is newly adopted in the lingual orthodontics to assist the upholding ability. The appliciation needs to understand the mechanism of the orthodontic appliance and its related orthodontic correction for optimal orthodontic treatment. There is, however, few information about the qualitative and quantitative effect of the orthodontic appliance with the miniscrew has not been well identified. In this paper, three dimensional finite element analysis is introduced to the lingual orthodontics in order to investigate the effect of the anterior retraction force on the miniscrew and transpalatal arch wire. The analysis determines the adequate location of the miniscrew and the point of force application of the anchorage system in the lingual orthodontics. The analysis results demonstrate the effect of the position of the miniscrew and the transpalatal arch wire on the lingual orthodontics.

Calculation of Iron Loss under Rotational Magnetic Field Using Finite Element Method (회전 자계에 의한 철손의 유한요소 해석)

  • Lee, H.Y.;Park, G.S.;Hahn, S.Y.
    • Proceedings of the KIEE Conference
    • /
    • 1994.07a
    • /
    • pp.147-149
    • /
    • 1994
  • In designing high efficiency electrical machines, calculation of iron loss is very important. And it is reported that in the induction motor and in the T-joint of 3 phase transformer, there occurred rotational magnetic field and much iron loss is generated owing to this field. In this paper, rotational power loss in the electrical machine under rotational magnetic field is discussed. Until now, loss analysis is based on the magnetic properties under alternating field. And with this one dimensional magnetic propertis, it is difficult to express iron loss under rotational field. In this paper, we used two dimensional magnetic property data for the numerical calculation of rotational power loss. We used finite element method for calculation and the analysis model is two dimensional magnetic property measurement system. We used permeability tensor instead of scalar permeability to present two dimensional magnetic properties. And in this case, we cannot uniquely define energy functional because of the asymmetry of the permeability tensor, so Galerkin method is used for finite element analysis.

  • PDF

The construction of multivariable Reissner-Mindlin plate elements based on B-spline wavelet on the interval

  • Zhang, Xingwu;Chen, Xuefeng;He, Zhengjia
    • Structural Engineering and Mechanics
    • /
    • v.38 no.6
    • /
    • pp.733-751
    • /
    • 2011
  • In the present study, a new kind of multivariable Reissner-Mindlin plate elements with two kinds of variables based on B-spline wavelet on the interval (BSWI) is constructed to solve the static and vibration problems of a square Reissner-Mindlin plate, a skew Reissner-Mindlin plate, and a Reissner-Mindlin plate on an elastic foundation. Based on generalized variational principle, finite element formulations are derived from generalized potential energy functional. The two-dimensional tensor product BSWI is employed to form the shape functions and construct multivariable BSWI elements. The multivariable wavelet finite element method proposed here can improve the solving accuracy apparently because generalized stress and strain are interpolated separately. In addition, compared with commonly used Daubechies wavelet finite element method, BSWI has explicit expression and a very good approximation property which guarantee the satisfying results. The efficiency of the proposed multivariable Reissner-Mindlin plate elements are verified through some numerical examples in the end.

Implementation of SOAP Client in U Programming Environment (nML 프로그래밍 환경에서 SOAP 클라이언트 구현)

  • 권오경;한태숙
    • Journal of KIISE:Software and Applications
    • /
    • v.30 no.1_2
    • /
    • pp.164-172
    • /
    • 2003
  • Web service implementations are now rapidly growing. Web services are easily achieved by XML messaging for most programming languages. Applications usually utilize web services through APIs tied to a specific implementation of SOAP. nML is a dialect of SML and OCaml made in ROPAS. The soaptype type in nML is defined for the value of SOAP encoding. SOAP encoding specification defines rules for serialization of a graph of typed objects using XML Schema. XML Schema validates XML SOAP value. The soaptype type is encoded to XML and decoded from XML. It is necessary to guarantee safe encoding and decoding. So, the definitions for element and type definition in XML Schema are specified by element type and typeinfo type, which include the part of the definitions of XML Schema specification.

Evaluation of Landing Impact Force of Court Sport Shoes by Finite Element Method (유한요소법을 이용한 코트 스포츠화의 착지 충격력 평가)

  • Kim, Seong-Ho;Ryu, Sung-Heon;Choi, Joo-Hyung;Cho, Jin-Rae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.11
    • /
    • pp.1786-1793
    • /
    • 2004
  • A fundamental function of court sport shoes was considered as the protection of human feet from unexpected injuries. But, recently its role for improving the playing competency has been regarded as of more importance. In connection of this situation, intensive efforts are world-widely forced on the development of court sport shoes proving the excellent playing competency by taking kinesiology and biomechanics into consideration. However, the success of this goal depends definitely on the shoes design based upon the reliable evaluation of shoes functional parts. This paper addresses the application of finite element method to the evaluation of landing impact force of court sport shoes. In order to reflect the coupling effect between leg and shoes accurately and effectively, we construct a fully coupled shoes-leg FEM model which does not rely on the independent experimental data any more. Through the numerical experiments, we assess the reliability of the coupled FEM model by comparing with the experimental results and investigate the landing impact characteristics of court sport shoes.

Study on the Retraction of Anterior Teeth in the Lingual Orthodontics with the Three-Dimensional Finite Element Method (유한 요소법을 이용한 설측 치아교정시 전치부 후방 견인에 관한 연구)

  • Song, Jung-Han;Hug, Hoon;Park, Hyun-Sang
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.198-203
    • /
    • 2004
  • In these days, the orthodontic surgery including lingual orthodontics has attracted a person' attention due to its functional and esthetic appreciation. The delivery of the optimal orthodontic treatment is greatly influenced by clinician' ability to predict and control the tooth movement by applying force system to dentition. The skeletal anchorage system with the miniscrew has been used recently in the lingual orthodontics to assist the anchorage control. Precise understanding of the force system produced from the various orthodontic appliances is necessary. However, the qualitative and quantitative effect of the miniscrew has not been identified well. In this paper, three dimensional finite element analysis is introduced on the lingual orthodontics to investigate the effect of anterior retraction force on the miniscrew and transpalatal arch wire. The purpose of this study is to determine the location of the miniscrew and the point of force application of the anchorage system in the lingual orthodontics. The analysis results indicate the efficient position of the miniscrew and the transpalatal arch wire in the lingual orthodontics.

  • PDF

Effects of overdenture attachment systems with different working principles on stress transmission: A three-dimensional finite element study

  • Turker, Nurullah;Buyukkaplan, Ulviye Sebnem
    • The Journal of Advanced Prosthodontics
    • /
    • v.12 no.6
    • /
    • pp.351-360
    • /
    • 2020
  • PURPOSE. The aim of the present study was to compare the stress distributions on the dental implants, abutments, and bone caused by different overdenture attachment types under functional chewing forces. MATERIALS AND METHODS. The 3D finite element models of the mandible, dental implants, attachment types, and prostheses were prepared. In accordance with a conventional dental implant supported overdenture design, the dental implants were positioned at the bone level in the canine teeth region bilaterally. A total of eight models using eight different attachment systems were used in this study. All the models were loaded to simulate chewing forces generated during the centric relationship (450 N), lateral movement (400 N), protrusive movement (400 N), and also in the presence of a food mass unilaterally (200 N). Stress outputs were obtained as the maximum principal stress and the equivalent von-Mises stress. RESULTS. In all attachment types, higher stress values were observed in the abutments, dental implants, and bone in the magnet attachments in different loading conditions. The highest stress values were observed among the magnet systems in the components of the Titanmagnetics model in all loading conditions (stresses were 15.4, 17.7, and 33.1 MPa on abutment, dental implant, and bone, respectively). The lowest stress value was observed in the models of Zest and O-Ring attachments. CONCLUSION. The results of the present study implied that attachment types permitting rotation and tolerating various angles created lower stresses on the bone, dental implants, and abutments.

Photoelectron spectro-microscopy/Scanning photoelectron microscopy (SPEM) (광전자 분광현미경학)

  • Shin, Hyun-Joon
    • Vacuum Magazine
    • /
    • v.3 no.4
    • /
    • pp.8-13
    • /
    • 2016
  • The need of space-resolved x-ray photoelectron spectroscopy (XPS) has developed scanning photoelectron microscopy (SPEM). SPEM provides space-resolved XPS data from a spot of a sample as well as images of specific element, chemical state, valency distribution on the surface of a sample. Based on technical advancement of tight x-ray focusing, sample positioning accuracy, and electron analyzer efficiency, SPEM is now capable of providing ~100 nm space resolution for typical XPS functionality, and SPEM has become actively applied for the investigation of chemical state, valency, and electronic structure on the surface of newly discovered materials, such as graphene layers, dichalcogenide 2D-materials, and heterogenous new functional materials.