• Title/Summary/Keyword: functional element

Search Result 642, Processing Time 0.027 seconds

A Study on the Premium Price Perception for High Functional Sports/Leisure Wear related to Sports/Leisure Activity, Well-being Health Consciousness, and Demographic Variables (고기능성 스포츠레저웨어의 프리미엄가격 지각에 대한 연구 - 스포츠레저활동도, 웰빙 건강 의식 및 인구통계적 특성과 관련성을 중심으로 -)

  • Chung, Ihn-Hee
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.33 no.9
    • /
    • pp.1506-1518
    • /
    • 2009
  • This study identifies the relationships among demographic variables, well-being health consciousness, sports/leisure activity, and the perceived premium price for high functional sports/leisure wear. An empirical study was conducted with the data collected by questionnaires distributed to male and female respondents aged 15 and over. Descriptive statistics, factor analysis, MANOVA, two-way ANOVA, and regressions were used to analyze 244 answers. As a result, 3 factors were determined for well-being health consciousness: nature-friendly life, premium consumption for health, and health care. The older group pursued a nature-friendly life more than the younger group, the female group pursued premium consumption for health more than male group, and older women and younger men pursued health care more than their counterparts. Sports/leisure activity was relatively intensive in the male group and in the younger group. Sports/leisure activity was explained by male characteristic and health care factors. Sports/leisure activity was the only element for predicting the perceived premium price ratio for high functional sports/leisure wear.

Prototype Product Based on the Functional Test of ANG Fuel Vessel Applied to Composite Carbon Fiber (탄소섬유 복합재료를 적용한 ANG 연료용기의 시제작 및 성능평가)

  • Kim, Gun-Hoi
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.3
    • /
    • pp.7-13
    • /
    • 2019
  • Recently, an automobile market used to natural gas has emerged as fast-growing as the several countries, who holds abundant natural fuel resources, has promoted to supply the national agency for an automobile car. LNG fuel vessel is more efficient in another way as the energy density is high, but it requires a high technology and investment to maintain extreme low temperature. CNG fuel vessel are relatively low-cost alternative to LNG, but poorly economical in terms of energy density as well as showing safety issues associated with compressed pressure. The development of adsorbed natural gas (ANG) has emerged as one of potential solutions. Therefore, it is desirable to reduce the weight of vessel by applying light-weighed a composite carbon fiber in order to response to the regulation of $CO_2$ emission. Herein, this study make the prototype ANG vessel not only based on the optimal design and analysis of material characteristic but also based on the shape design, and it suggest a new type for the composite carbon fiber vessel which verified functional test. Moreover, the detail shape design is analyzed by a finite element analysis, and its verifies the ANG vessel.

Patent and Anti-wrinkle Cosmetics

  • Jang Jinah
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.29 no.2 s.43
    • /
    • pp.131-147
    • /
    • 2003
  • In the 21st century, the development of cosmetics is led to pursue the high functionality of cosmetics with excellent effectiveness and safety. As Cosmetic Act took effect in 2000, functional cosmetics is provided in the law. As a result, the research and development of functional cosmetics has continually increased, and the number of patent applications in functional cosmetics has also rapidly increased as a plan for preoccupying in the functional cosmetics age. Now, the cosmetic industry has a great interest in developing anti-wrinkle cosmetics among functional cosmetics, because women's desire for having young resilient skin has increased since Korea entered an aging society thanks to the advanced medical technology. The patent application trends of anti-wrinkle cosmetics at home since 2000 particularly show the rapid increase in the applications in natural plant extracts. It may be because Korean consumers preference of vegetable cosmetics has resulted in the development of raw materials based on the traditional medicine. As for the existing preparation such as Retinoid or Ascorbic acid, the patent application itself will be an essential technical element in the future because patent applications are filed in the field of a preparation of cosmetics for stabilizing ingredients, reducing skin irritability or promoting absorbance, and in the field of cosmetic formulation technology. As there are many studies on the causes of skin wrinkles, it is expected that new raw materials of cosmetics can be developed due to new mechanisms, and that the number of patent applications in new technologies will increase due to a change in the thought of cosmetics accompanied by the integration of cosmetics with biotechnology using Genetic Engineering, including the practical application of the medicine previously used far treating skin diseases to an anti-wrinkle agent and the mass production of active ingredients of cosmetics.

A Review on "Kidney" Functional System in Korean Medicine : From the Perspective of Molecular Physiology (한의학 신(腎) 기능계에 관한 분자생리학적 고찰)

  • Miso S., Park;Junghyo, Cho;Wangjung, Hur;Horyong, Yoo
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.36 no.5
    • /
    • pp.169-174
    • /
    • 2022
  • In Korean medicine, the "five viscera" theory develops into the theory of homeostasis, in which the dynamic equilibrium state of the yin yang and five elements in the body maintain the balance of the physiological functions. The "five viscera" of the "five elements" can also be referred to as the "functional system," a conceptual system that includes all functional interactions mediated by the organ as well as the organ itself. Nowadays, the structure and function of the organs and tissues in the body are being re-examined, and there is now enough evidence that organs, structures, and their functions that belong to the same "element" are all connected in terms of energy metabolism. The functional system of the "kidney" includes the kidney itself, as well as other components that belong to "water" of the five elements such as bladder, bone, ear, essence, memory, and fear. The authors will discuss the latest findings in science and medicine to expand the understanding of the "Kidney" functional system to the level of molecular physiology.

A STUDY ON THE STRESS DISTRIBUTION OF CANTILEVER BRIDGE UNDER MAXIMUM BITE FORCE AND FUNCTIONAL BITE FORCE USING THREE DIMENSIONAL FINITE ELEMENT METHOD (최대교합 및 기능교합시 하악구치부 연장가공의치에 발생하는 응력에 대한 삼차원 유한요소법적 연구)

  • Park Chang-Keun;Lee Sun-Hyung;Chung Hun-Young;Yang Jae-Ho
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.32 no.4
    • /
    • pp.484-514
    • /
    • 1994
  • Cantilever bridge is widely used by mny clinicians, but its worst mechanical character, so called Class I lever system, makes dentists hesitate to restore the missing tooth with it. Therefore it is important to study stress of the cantilever bridge. In this study, two models of cantilever bridges that restores the missing mandibular second molar with two abutment teeth were constructed. One model was a type of cantilever bridge supported by a normal alveolar bone, the other one was supported by an alveolar bone resorbed to its 1/3 of root length. Maximum bite force(550N) and funtional maximum bite force(300N) were vertically applied to the distal end of the pontic, distal 1/3, and distal half of the pontic. And each force was also applied to centric occlusal contacts as a distributed force. Total 16 loading cases were compared and analyzed with 3-dimensional finite element method. The results were as follows: 1. The stress was concentrated on the joint of the pontic and the retainer, grooves, and distal cervical margin of the posterior retainer. 2. In case of maximum bite force(550N) at the end of the pontic, the risk of fracture at the joint of the pontic and the retainer was high. 3. In case of distributed force in centric occlusion and functional maximum bite force(300N), the stresses were less than the yield strength of the type VI gold for any loading cases. 4. In case of alveolar bone resorption, the occlusal force to the cantilever pontic caused more stress on the root apex and less stress on the alveolar crest region of the distal surface of the posterior abutment. 5. In case of alveolar bone resorption, the displacement was larger than that of normal alveolar bone in all loading cases.

  • PDF

Magnetic Field Computations of the Magnetic Circuits with Permanent Magnets using Finite Element Method (유한요소법을 이용한 영구자석 자기회로의 자석 해석)

  • 박영건;정현규;한송엽
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.33 no.5
    • /
    • pp.167-172
    • /
    • 1984
  • This paper describes the finite element analysis of magnetostatic field problems with permanent magnets. Two kinds of algorithms, one using the magnetic vector potential and the other using the magnetic scalar potential, are introduced. The magnetization of the pemanent magnet is used as the source instead of the magnetic equivalent current in both of the formulations using the magnetic vector potential and the magnetic scalar potential. A simple functional, which has only the region integral instead of the region integral and boundary integral, is derived in the formulation using the magnetic scalar potential. These make the formulation of the system equations simpler and more convenient than the conventional methods. The numerical results by the two proposed algorithms for a C-type permanent magnet model are compared with the analytic solutions respectively. The numerical results are in good agreement with the analytic solutions.

  • PDF

Influence of modified intended use on the seismic behavior of historical himis structures

  • Cakir, Ferit;Ergen, Yasar B.;Uysal, Habib;Dogangun, Adem
    • Earthquakes and Structures
    • /
    • v.10 no.4
    • /
    • pp.893-911
    • /
    • 2016
  • There are some modifications in the usage purpose of historical structures due to varying needs and changing conditions. However, those modifications can damage the structural system and the system stability. This study focuses on the investigation of the functional effects and usage modifications on the system stability. In this study, three different finite element models of the Hayati $Teknecio\breve{g}lu$ Mansion in Turkey are developed and the seismic responses of the models are investigated. Results of the analyses show that usage modifications might be considered as risky in terms of creating problems for seismic performance.

Buckling characteristics and static studies of multilayered magneto-electro-elastic plate

  • Kiran, M.C.;Kattimani, S.C.
    • Structural Engineering and Mechanics
    • /
    • v.64 no.6
    • /
    • pp.751-763
    • /
    • 2017
  • This article deals with the buckling behaviour of multilayered magneto-electro-elastic (MEE) plate subjected to uniaxial and biaxial compressive (in-plane) loads. The constitutive equations of MEE material are used to derive a finite element (FE) formulation involving the coupling between electric, magnetic and elastic fields. The displacement field corresponding to first order shear deformation theory (FSDT) has been employed. The in-plane stress distribution within the MEE plate existing due to the enacted force is considered to be equivalent to the applied in-plane compressive load in the pre-buckling range. The same stress distribution is used to derive the potential energy functional. The non-dimensional critical buckling load is accomplished from the solution of allied linear eigenvalue problem. Influence of stacking sequence, span to thickness ratio, aspect ratio, load factor and boundary condition on critical buckling load and their corresponding mode shape is investigated. In addition, static deflection of MEE plate under the sinusoidal and the uniformly distributed load has been studied for different stacking sequences and boundary conditions.

A Study on Initial Blank Design and Modification for Rectangular Case Forming with Extreme Aspect Ratio (세장비가 큰 사각케이스 성형을 위한 초기 블랭크의 설계 및 개선에 관한 연구)

  • 구태완;박철성;강범수
    • Transactions of Materials Processing
    • /
    • v.13 no.4
    • /
    • pp.307-318
    • /
    • 2004
  • Rectangular drawn case with extreme aspect ratio is widely used for electrical parts such as a lithium-ion battery container, semi-conductor case and so on. Additionally, from the recent trend towards miniaturization of the multi-functional mobile device, demands for rectangular case with the narrow width are increased. In this study, numerical and experimental approaches for the multi-stage deep drawing process have been carried out. Based on the research results of the width of 5.95mm model, finite element analysis for storage case of rectangular cup type was verified to the width of 4.95mm. Also, a series of manufacturing experiments for rectangular case is conducted and the deformed configuration of the rectangular drawn case are investigated by comparing with the results of the numerical analysis. And the modification of the initial blank is performed to minimize the trimmed material amount. By the application of the modified blank, the sound shape of the deformed parts is improved.

Improved Optimal Approximated Unfolding Algorithm of a Curved Shell Plate with Automatic Mesh Generation (자동 메쉬 생성을 적용한 향상된 자유 곡면의 최적 근사 전개 알고리즘)

  • Ryu C.H.;Shin J.G.
    • Korean Journal of Computational Design and Engineering
    • /
    • v.11 no.3
    • /
    • pp.157-163
    • /
    • 2006
  • Surfaces of many engineering structures, especially, those of ships are commonly made out of either single- or double-curved surfaces to meet functional requirements. The first step in the fabrication process of a three-dimensional design surface is unfolding or flattening the surface, otherwise known as planar development, so that manufacturers can determine the initial flat plate which is required to form the design shape. In this paper, an algorithm for optimal approximated development of a general curved surface, including both single- and double-curved surfaces, is established by minimizing the strain energy of deformation from its planar development to the design surface. The unfolding process is formulated into a constrained nonlinear programming problem, based on the deformation theory and finite element. Constraints are subjected to the characteristics of the fabrication method. And the design surface, or the curved shell plate is subdivided by automatic mesh generation.