• Title/Summary/Keyword: functional ceramics

Search Result 119, Processing Time 0.024 seconds

Wet Foam Stability from Colloidal Suspension to Porous Ceramics: A Review

  • Kim, Ik Jin;Park, Jung Gyu;Han, Young Han;Kim, Suk Young;Shackelford, James F.
    • Journal of the Korean Ceramic Society
    • /
    • v.56 no.3
    • /
    • pp.211-232
    • /
    • 2019
  • Porous ceramics are promising materials for a number of functional and structural applications that include thermal insulation, filters, bio-scaffolds for tissue engineering, and preforms for composite fabrication. These applications take advantage of the special characteristics of porous ceramics, such as low thermal mass, low thermal conductivity, high surface area, controlled permeability, and low density. In this review, we emphasize the direct foaming method, a simple and versatile approach that allows the fabrication of porous ceramics with tailored microstructure, along with distinctive properties. The wet foam stability is achieved under the controlled addition of amphiphiles to the colloidal suspension, which induce in situ hydrophobization, allowing the wet foam to resist coarsening and Ostwald ripening upon drying and sintering. Different components, like contact angle, adsorption free energy, air content, bubble size, and Laplace pressure, play vital roles in the stabilization of the particle stabilized wet foam to the porous ceramics. The mechanical behavior of the load-displacements curves of sintered samples was investigated using Herzian indentations testes. From the collected results, we found that microporous structures with pore sizes from 30 ㎛ to 570 ㎛ and the porosity within the range from 70% to 85%.

Low-temperature Sintering and Dielectric Properties of $CaZrO_3-CaTiO_3$ Ceramics for Middle- Permittivity LTCC Substrate (중유전율 LTCC 기판용 $CaZrO_3-CaTiO_3$계 세라믹스의 저온소결 및 유전특성)

  • Park Jeong-Hyun;Choi Young-Jin;Ko Won-Jun;Park Jae-Hwan;Park Jae-Gwan
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.11 no.3 s.32
    • /
    • pp.17-22
    • /
    • 2004
  • The microwave dielectric properties of $CaZrO_3$ ceramics with addition of $CaTiO_3$ were studied. The effect of glass addition on the low-temperature sintering and microwave dielectric properties of $CaZrO_3-CaTiO_3$ ceramics were also evaluated to develop the materials for functional substrates of low-temperature co-fired ceramics. When $10-20 wt\%$ of lithium borosilicate glass was added, the sintering temperature of the $CaZrO_3-CaTiO_3$ ceramics decreased from $1450^{\circ}C$ to below $900^{\circ}C$. As the $T_f$ of glass frits and $CaZrO_3$ are slightly negative and that of $CaTiO_3$ is significantly positive, zero $T_f$ could be realized by mixing an appropriate amount of $CaTiO_3$ with $CaZrO_3$. The $CaZrO_3-CaTiO_3$ ceramics sintered at $875^{\circ}C$ with $15wt\%$ glass frits showed the relative density of $98\%$, permittivity of 23, quality factor of 2500 GHz, and temperature coefficient of resonant frequency of $ -3 ppm/^{\circ}C$.

  • PDF

Growth of lead-based functional crystals by the vertical bridgman method

  • Xu Jiayue
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.16 no.1
    • /
    • pp.1-7
    • /
    • 2006
  • Some lead-based crystals show excellent ferroelectric, piezoelectric or scintillation properties and have attracted much attention in recent years. However, the erosion of the high temperature solution on platinum crucible and the evaporation of PbO component are the main problems often encountered during the crystal growth. In this paper, we reported recent progress on the Bridgman growth of lead-based functional crystals, such as novel relaxor ferroelectric crystals (PZNT and PMNT), scintillation crystals $(PbWO_4,\;PbF_2\;and\;PbClF)$ and piezoelectric crystals $(Pb_5Ge_3O_{11}\;and\;Pb_2KNb_5O_{15}),$ in Shanghai Institute of Ceramics, Chinese Academy of Sciences. The vertical Bridgman method has been modified to grow PZNT crystals from high temperature solution and as-grown crystals have been characterized. Large size lead-based scintillators, $PbWO_4\;and\;PbF_2$ crystals, have been mass-produced by the vertical Bridgman method in the multi-crucible fumace. These crystals have been supplied to CERN and other laboratories for high-energy physics experiments. The Bridgman growth of piezoelectric crystals $Pb_5Ge_3O_{11}\;and\;Pb_2KNb_5O_{15}$ are discussed also.

Comparison of traditional and simplified methods for repairing CAD/CAM feldspathic ceramics

  • Carrabba, Michele;Vichi, Alessandro;Louca, Chris;Ferrari, Marco
    • The Journal of Advanced Prosthodontics
    • /
    • v.9 no.4
    • /
    • pp.257-264
    • /
    • 2017
  • PURPOSE. To evaluate the adhesion to CAD/CAM feldspathic blocks by failure analysis and shear bond strength test (SBSt) of different restorative systems and different surface treatments, for purpose of moderate chipping repair. MATERIALS AND METHODS. A self-adhering flowable composite (Vertise Flow, Kerr) containing bi-functional phosphate monomers and a conventional flowable resin composite (Premise Flow, Kerr) applied with and without adhesive system (Optibond Solo Plus, Kerr) were combined with three different surface treatments (Hydrofluoric Acid Etching, Sandblasting, combination of both) for repairing feldspathic ceramics. Two commercial systems for ceramic repairing were tested as controls (Porcelain Repair Kit, Ultradent, and CoJet System, 3M). SBSt was performed and failure mode was evaluated using a digital microscope. A One-Way ANOVA (Tukey test for post hoc) was applied to the SBSt data and the Fisher's Exact Test was applied to the failure analysis data. RESULTS. The use of resin systems containing bi-functional phosphate monomers combined with hydrofluoric acid etching of the ceramic surface gave the highest values in terms of bond strength and of more favorable failure modalities. CONCLUSION. The simplified repairing method based on self-adhering flowable resin combined with the use of hydrofluoric acid etching showed high bond strength values and a favorable failure mode. Repairing of ceramic chipping with a self-adhering flowable resin associated with hydrofluoric acid etching showed high bond strength with a less time consuming and technique-sensitive procedure compared to standard procedure.

Power Densities According to Anode Functional Layers on the Manufactured SOFC Unit Cells Using Decalcomania Method (전사지를 이용 적층한 셀 구조 및 연료극 기능층 형성에 따른 출력 특성)

  • An, Yong-Tae;Ji, Mi-Jung;Gu, Ja-Bin;Choi, Jin-Hoon;Hwang, Hae-Jin;Choi, Byung-Hyun
    • Korean Journal of Materials Research
    • /
    • v.22 no.11
    • /
    • pp.626-630
    • /
    • 2012
  • The properties of SOFC unit cells manufactured using the decalcomania method were investigated. SOFC unit cell manufacturing using the decalcomania method is a very simple process. In order to minimize the ohmic loss of flattened tube type anode supports of solid oxide fuel cells(SOFC), the cells were fabricated by producing an anode function layer, YSZ electrolyte, LSM electrode, etc., on the supports and laminating them. The influence of these materials on the power output characteristics was studied when laminating the components and laminating the anode function layer between the anode and the electrolyte to improve the output characteristics. Regarding the performance of the SOFC unit cell, the output was 246 $mW/cm^2$ at a temperature of $800^{\circ}C$ in the case of not laminating the anode function layer; however, this value was improved by a factor of two to 574 $mW/cm^2$ due to the decrease of the ohmic resistance and polarization resistance of the cell in the case of laminating the anode function layer. The outputs appeared to be as high as 574 and 246 $mW/cm^2$ at a temperature of $800^{\circ}C$ in the case of using decalcomania paper when laminating the electrolyte layer using the in dip-coating method; however, the reason for this is that interfacial adhesion was improved due to the dense structure, which leads to a thin thickness of the electrolyte layer.

Synthesis of Lanthanides Doped $CaTiO_3$ Powder by the Combustion Process

  • Jung, Choong-Hwan;Park, Ji-Yeon;Lee, Min-Yong;Oh, Seok-Jin;Kim, Hwan-Young;Hong, Gye-Won
    • The Korean Journal of Ceramics
    • /
    • v.6 no.1
    • /
    • pp.47-52
    • /
    • 2000
  • Lanthanides such as La, Gd and Ce have recognized as elements of high level radioactive wastes immobilized by forming solid solution with $CaTiO_3$. For easy forming solid solution between $CaTiO_3$and lanthanides, the combustion synthesis process was applied and the powder characteristics and sinterability were investigated. The proper selection of the type and the composition of fuels are important to get the crystalline solid solution of $CaTiO_3$and lanthanides. When glycine or the mixtures of urea and citric acid with stoichiometric composition was used as a fuel, the solid solution of $CaTiO_3$with $La_2O_3$or $Gd_2O_3$or $CeO_2$was produced very well by the combustion process. The combustion synthesized powder seemed to have a good sinterability with the linear shrinkage of more than 25% up to $1500^{\circ}C$, while that of the solid state reacted powder was less than 10% at the same condition.

  • PDF

Basic Experimental Investigations to UV Laser Micro-Machining of Nano-Porous Alumina Ceramic Material (나노 다공 구조를 가진 알루미나 재료의 UV 레이저 미세가공에 관한 실험적 기초 연구)

  • Shin, Bo-Sung;Lee, Jung-Han
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.1
    • /
    • pp.62-67
    • /
    • 2012
  • Recently UV laser is widely used to process micro parts using various materials such as polymers, metals and ceramics because it has a very high intensity at the focused spot area. It is generally known that there are still some difficulties for alumina($Al_2O_3$) ceramics to directly make micro patterns like holes and lines on the surface of working material using 355nm UV laser because the alumina has a very low absorption coefficient at that wavelength. But nowadays new alumna with nano-porous holes is developed and applied to advanced micro functional parts of IT, BT and BT industries. In this paper, we are going to show the mechanism of photo-thermal ablation for nano-porous ceramics. Inside hole there is a lot of multiple reflections along the depth of hole. Experimentally we can find the micro hole drilling and micro grooving on the surface of nano-porous alumina.

Electrical Properties of $SrTiO_3$-based Ceramics ($SrTiO_3$계 세라믹의 전기적인 특성)

  • 김진사;소병문;이준웅
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.11 no.1
    • /
    • pp.41-47
    • /
    • 1998
  • The (Sr$_1$-\ulcorner.Ca\ulcorner)TiO$_3$(0.05 x 0.2) ceramics were fabricated to form semiconducting ceramics by sintering at about 1350[$^{\circ}C$] in a reducing atmosphere($N_2$gas). After being fired in a reducing atmosphere, metal oxides(CuO) was painted on the both surface of the specimens to diffuse to the grain boundary. The capacitance changes slowly and almost linearly in the temperature region of -40~+85[$^{\circ}C$]. The capacitance characteristics appears a stable value within $\pm$10[%]. According to increase of the frequency as a functional of temperature, all specimens used in this study showed the dielectric relaxation, and the relaxation frequency was above 10\ulcorner[Hz]. The capacitance is almost unchanged below about 20[V] but it decrease slowly over 20[V]. The voltage-current characteristics of specimens observed in the temperature range of 25~125[$^{\circ}C$] as the current increased appears that it is due to space charge condensed to interface between grain and grain boundary.

  • PDF

A study on the dielectric and electrical conduction properties of$(Sr_{1-x}.Ca_x)TiO_3$ grain boundary layer ceramics ($(Sr_{1-x}.Ca_x)TiO_3$입계층 세라믹의 유전 및 전기전도특성에 관한 연구)

  • 최운식;김충혁;이준웅
    • Electrical & Electronic Materials
    • /
    • v.8 no.5
    • /
    • pp.611-618
    • /
    • 1995
  • The (Sr$_{1-x}$ .Ca$_{x}$)TiO$_{3}$+0.6[mol%]Nb$_{2}$O$_{5}$ (0.05.leq.x.leq.0.2) ceramics were fabricated to form semiconducting ceramics by sintering at about 1350[.deg. C] in a reducing atmosphere(N$_{2}$ gas). Metal oxides, CuO, was painted on the both surface of the specimens to diffuse to the grain boundary. They were annealed at 1100 [.deg. C] for 2 hours. The 2nd phase formed by thermal diffusing from the surface lead to a very high apparent dielectric constant. According to increase of the frequency as a functional of temperature, all specimens used in this study showed the dielectric relaxation, and the relaxation frequency was above 106 [Hz], it move to low frequency with increasing resistivity of grain. The specimens showed three kinds of conduction mechanisms in the temperature range 25-125 [.deg. C] as the current increased: the region I below 200 [V/cm] shows the ohmic conduction. The region rt between 200 [V/cm] and 2000 [V/cm] can be explained by the Poole-Frenkel emission theory, and the region III above 2000 [V/cm] is dominated by the tunneling effect.fect.

  • PDF

Synthesis of Graphene Coated Aluminum Powders by Self-assemble Reaction (자기 조립 반응에 의한 그래핀이 코팅된 알루미늄 입자의 합성 방법)

  • Hwang, Jin Uk;Tak, Woo Seong;Nam, Sang Yong;Kim, Woo Sik
    • Journal of Powder Materials
    • /
    • v.26 no.5
    • /
    • pp.383-388
    • /
    • 2019
  • To improve the mechanical properties of aluminum, graphene has been used as a reinforcing material, yielding graphene-reinforced aluminum matrix composites (GRAMCs). Dispersion of graphene materials is an important factor that affects the properties of GRAMCs, which are mainly manufactured by mechanical mixing methods such as ball milling. However, the use of only mechanical mixing process is limited to achieve homogeneous dispersion of graphene. To overcome this problem, in this study, we have prepared composite materials by coating aluminum particles with graphene by a self-assembly reaction using poly vinylalcohol and ethylene diamine as coupling agents. The scanning electron microscopy and Fourier-transform infrared spectroscopy results confirm the coating of graphene on the Al surface. Bulk density of the sintered composites by spark plasma sintering achieved a relative density of over 99% up to 0.5 wt.% graphene oxide content.