• 제목/요약/키워드: function approximation technique

검색결과 120건 처리시간 0.019초

The Use of Generalized Gamma-Polynomial Approximation for Hazard Functions

  • Ha, Hyung-Tae
    • 응용통계연구
    • /
    • 제22권6호
    • /
    • pp.1345-1353
    • /
    • 2009
  • We introduce a simple methodology, so-called generalized gamma-polynomial approximation, based on moment-matching technique to approximate survival and hazard functions in the context of parametric survival analysis. We use the generalized gamma-polynomial approximation to approximate the density and distribution functions of convolutions and finite mixtures of random variables, from which the approximated survival and hazard functions are obtained. This technique provides very accurate approximation to the target functions, in addition to their being computationally efficient and easy to implement. In addition, the generalized gamma-polynomial approximations are very stable in middle range of the target distributions, whereas saddlepoint approximations are often unstable in a neighborhood of the mean.

신경망을 이용한 열간단조품의 초기 소재 설계 (Design of Initial Billet using the Artificial Neural Network for a Hot Forged Product)

  • Kim, D.J.;Kim, B.M.;Park, J.C.
    • 한국정밀공학회지
    • /
    • 제12권11호
    • /
    • pp.118-124
    • /
    • 1995
  • In the paper, we have proposed a new technique to determine the initial billet for the forged products using a function approximation in neural network. A three-layer neural network is used and a back propagation algorithm is employed to train the network. An optimal billet which satisfied the forming limitation, minimum of incomplete filling in the die cavity, load and energy as well as more uniform distribution of effective strain, is determined by applying the ability of function approximation of the neural network. The amount of incomplete filling in the die, load and forming energy as well as effective strain are measured by the rigid-plastic finite element method. This new technique is applied to find the optimal billet size for the axisymmetric rib-web product in hot forging. This would reduce the number of finite element simulation for determining the optimal billet of forging products, further it is usefully adopted to physical modeling for the forging design

  • PDF

New Inference for a Multiclass Gaussian Process Classification Model using a Variational Bayesian EM Algorithm and Laplace Approximation

  • Cho, Wanhyun;Kim, Sangkyoon;Park, Soonyoung
    • IEIE Transactions on Smart Processing and Computing
    • /
    • 제4권4호
    • /
    • pp.202-208
    • /
    • 2015
  • In this study, we propose a new inference algorithm for a multiclass Gaussian process classification model using a variational EM framework and the Laplace approximation (LA) technique. This is performed in two steps, called expectation and maximization. First, in the expectation step (E-step), using Bayes' theorem and the LA technique, we derive the approximate posterior distribution of the latent function, indicating the possibility that each observation belongs to a certain class in the Gaussian process classification model. In the maximization step, we compute the maximum likelihood estimators for hyper-parameters of a covariance matrix necessary to define the prior distribution of the latent function by using the posterior distribution derived in the E-step. These steps iteratively repeat until a convergence condition is satisfied. Moreover, we conducted the experiments by using synthetic data and Iris data in order to verify the performance of the proposed algorithm. Experimental results reveal that the proposed algorithm shows good performance on these datasets.

함수근사를 위한 서포트 벡터 기계의 커널 애더트론 알고리즘 (Kernel Adatron Algorithm of Support Vector Machine for Function Approximation)

  • 석경하;황창하
    • 한국정보처리학회논문지
    • /
    • 제7권6호
    • /
    • pp.1867-1873
    • /
    • 2000
  • 함수근사는 과학과 고학부야에서 공범위하게 응용된다. 시포트 벡터 기계(support vector machine, SVM)는 원래 분류를 위해 계안되어져 문자인식, 얼굴인식 등의 응용분야에서 좋은 결과를 보여주고 있다. 최근 SVM이론 함수근사로 확장되어 많이 활용되려 하고 있다. 그러나 함수근사를 위한 SVM 알고리즘은 QP(quadratic proramming)문제와 관련되어있어 계산에 시간이 걸리며 QP를 위한 패키지가 있어야 한다. 본 논문에서는 함수근사를 위해 커널-애더트론 알고리즘을 이용한 SVM을 제안하고 QP를 이용한 SVM과 성능을 비교하고자 한다.

  • PDF

함수 근사 모멘트 방법에서 추정한 1∼4차 통계적 모멘트의 수치적 검증 (Numerical Verification of the First Four Statistical Moments Estimated by a Function Approximation Moment Method)

  • 곽병만;허재성
    • 대한기계학회논문집A
    • /
    • 제31권4호
    • /
    • pp.490-495
    • /
    • 2007
  • This research aims to examine accuracy and efficiency of the first four moments corresponding to mean, standard deviation, skewness, and kurtosis, which are estimated by a function approximation moment method (FAMM). In FAMM, the moments are estimated from an approximating quadratic function of a system response function. The function approximation is performed on a specially selected experimental region for accuracy, and the number of function evaluations is taken equal to that of the unknown coefficients for efficiency. For this purpose, three error-minimizing conditions are utilized and corresponding canonical experimental regions constructed accordingly. An interpolation function is then obtained using a D-optimal design and then the first four moments of it are obtained as the estimates for the system response function. In order to verify accuracy and efficiency of FAMM, several non-linear examples are considered including a polynomial of order 4, an exponential function, and a rational function. The moments calculated from various coefficients of variation show very good accuracy and efficiency in comparison with those from analytic integration or the Monte Carlo simulation and the experimental design technique proposed by Taguchi and updated by D'Errico and Zaino.

Polynomially Adjusted Normal Approximation to the Null Distribution of Ansari-Bradley Statistic

  • Ha, Hyung-Tae;Yang, Wan-Youn
    • 응용통계연구
    • /
    • 제24권6호
    • /
    • pp.1161-1168
    • /
    • 2011
  • The approximation for the distribution functions of nonparametric test statistics is a significant step in statistical inference. A rank sum test for dispersions proposed by Ansari and Bradley (1960), which is widely used to distinguish the variation between two populations, has been considered as one of the most popular nonparametric statistics. In this paper, the statistical tables for the distribution of the nonparametric Ansari-Bradley statistic is produced by use of polynomially adjusted normal approximation as a semi parametric density approximation technique. Polynomial adjustment can significantly improve approximation precision from normal approximation. The normal-polynomial density approximation for Ansari-Bradley statistic under finite sample sizes is utilized to provide the statistical table for various combination of its sample sizes. In order to find the optimal degree of polynomial adjustment of the proposed technique, the sum of squared probability mass function(PMF) difference between the exact distribution and its approximant is measured. It was observed that the approximation utilizing only two more moments of Ansari-Bradley statistic (in addition to the first two moments for normal approximation provide) more accurate approximations for various combinations of parameters. For instance, four degree polynomially adjusted normal approximant is about 117 times more accurate than normal approximation with respect to the sum of the squared PMF difference.

The nonlinear function approximation based on the neural network application

  • Sugisaka, Masanori;Itou, Minoru
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2000년도 제15차 학술회의논문집
    • /
    • pp.462-462
    • /
    • 2000
  • In this paper, genetic algorithm (GA) is the technique to search for the optimal structures (i,e., the kind of neural network, the number of hidden neuron, ..) of the neural networks which are used approximating a given nonlinear function, In this paper, we used multi layer feed-forward neural network. The decision method of synapse weights of each neuron in each generation used back-propagation method. In this study, we simulated nonlinear function approximation in the temperature control system.

  • PDF

On A Symbolic Method for Error Estimation of a Mixed Interpolation

  • Thota, Srinivasarao
    • Kyungpook Mathematical Journal
    • /
    • 제58권3호
    • /
    • pp.453-462
    • /
    • 2018
  • In this paper, we present a symbolic formulation of the error obtained due to an approximation of a given function by the mixed-interpolating function. Using the proposed symbolic method, we compute the error evaluation operator as well as the error estimation at any arbitrary point. We also present an algorithm to compute an approximation of a function by the mixed interpolation technique in terms of projector operator. Certain examples are presented to illustrate the proposed algorithm. Maple implementation of the proposed algorithm is discussed with sample computations.

모델 불확실성을 가지는 로봇 시스템을 위한 지능형 슬라이딩 모드 제어 (Intelligent Sliding Mode Control for Robots Systems with Model Uncertainties)

  • 유성진;최윤호;박진배
    • 제어로봇시스템학회논문지
    • /
    • 제14권10호
    • /
    • pp.1014-1021
    • /
    • 2008
  • This paper proposes an intelligent sliding mode control method for robotic systems with the unknown bound of model uncertainties. In our control structure, the unknown bound of model uncertainties is used as the gain of the sliding controller. Then, we employ the function approximation technique to estimate the unknown nonlinear function including the width of boundary layer and the uncertainty bound of robotic systems. The adaptation laws for all parameters of the self-recurrent wavelet neural network and those for the reconstruction error compensator are derived from the Lyapunov stability theorem, which are used for an on-line control of robotic systems with model uncertainties and external disturbances. Accordingly, the proposed method can not only overcome the chattering phenomenon in the control effort but also have the robustness regardless of model uncertainties and external disturbances. Finally, simulation results for the five-link biped robot are included to illustrate the effectiveness of the proposed method.

비선형 상호 연결된 시간 지연 시스템을 위한 함수 예측 기법에 기반한 분산 적응 출력 궤환 제어 (Approximation-Based Decentralized Adaptive Output-Feedback Control for Nonlinear Interconnected Time-Delay Systems)

  • 유성진
    • 한국지능시스템학회논문지
    • /
    • 제22권2호
    • /
    • pp.174-180
    • /
    • 2012
  • 본 논문은 미지의 시간 지연을 갖는 비선형 상호 연결 시스템을 위한 분산 적응 출력 궤환 제어기를 제안한다. 미지의 시간 지연을 갖는 상호 연결 부분은 부시스템들의 모든 상태 변수를 포함한다. 적당한 르아브노브-크라소브스키 함수와 함수 예측 기법을 사용하여 시간 지연 함수들을 보상한다. 각각의 부시스템을 위한 시간에 독립적인 지역 제어기를 설계하기 위해 관측 동적 표면 제어 기법을 이용한다. 제어된 페루프 시스템의 모든 신호들이 준 전역적이고 균일하게 유계됨과 제어 오차가 원점 주위의 조절 가능한 주변으로 수렴함을 증명한다.