• Title/Summary/Keyword: fumonisin production.

Search Result 20, Processing Time 0.107 seconds

Mycotoxins Produced by Fungi Contaminated on the Round Bale Silage (곤포사일리지에 발생하는 곰팡이가 생산하는 진균 독소)

  • Nho, W.G.;Seo, S.;Kim, M.K.;Seo, G.S.
    • Journal of Practical Agriculture & Fisheries Research
    • /
    • v.14 no.1
    • /
    • pp.85-92
    • /
    • 2012
  • To elucidate the mycotoxin production of Penicillium, Aspergillus and Fusarium spp. isolated from round bale silage, TLC analysis of culture filtrates were conducted. Mycotoxin citrin and patulin were detected from culture filtrates of Penicillium paneum. Aflatoxin was detected from culture filtrates of Aspergillus flavus. Gliotoxin are known to produce by A. fumigatus was not detected. Mycotoxins produces by Fusarium spp., Fumonisin, zearalenone and deoxynivalenol was not detected in the culture filtrates of Fusarium proliferatum.

Multi-Homologous Recombination-Based Gene Manipulation in the Rice Pathogen Fusarium fujikuroi

  • Hwang, In Sun;Ahn, Il-Pyung
    • The Plant Pathology Journal
    • /
    • v.32 no.3
    • /
    • pp.173-181
    • /
    • 2016
  • Gene disruption by homologous recombination is widely used to investigate and analyze the function of genes in Fusarium fujikuroi, a fungus that causes bakanae disease and root rot symptoms in rice. To generate gene deletion constructs, the use of conventional cloning methods, which rely on restriction enzymes and ligases, has had limited success due to a lack of unique restriction enzyme sites. Although strategies that avoid the use of restriction enzymes have been employed to overcome this issue, these methods require complicated PCR steps or are frequently inefficient. Here, we introduce a cloning system that utilizes multi-fragment assembly by In-Fusion to generate a gene disruption construct. This method utilizes DNA fragment fusion and requires only one PCR step and one reaction for construction. Using this strategy, a gene disruption construct for Fusarium cyclin C1 (FCC1), which is associated with fumonisin B1 bio-synthesis, was successfully created and used for fungal transformation. In vivo and in vitro experiments using confirmed fcc1 mutants suggest that fumonisin production is closely related to disease symptoms exhibited by F. fujikuroi strain B14. Taken together, this multi-fragment assembly method represents a simpler and a more convenient process for targeted gene disruption in fungi.

Development of Enzyme-Linked Immunosorbent Assay for the Detection of Fumonisins (효소면역측정법을 이용한 Fumonisin의 검출법 개발)

  • Shon, Dong-Hwa;Hahn, Seong-Min;Lim, Sun-Hee;Lee, Yin-Won;Cho, Sun-Hee;Kang, Shin-Young;Lee, Kyung-Ae
    • Microbiology and Biotechnology Letters
    • /
    • v.24 no.1
    • /
    • pp.119-125
    • /
    • 1996
  • In order to develop enzyme-linked immunosorbent assay (ELISA) for fumonisins, production of specific antibodies, establishment of ELISA conditions, and quantitation of the toxin from spiked corns by ELISA were performed. Fumonisin $B_1(FB_1)$ conjugated to cholera toxin (CT) with or without Freund's adjuvant was subcutaneously injected into 2 groups of rabbits. When the titer of the antisera produced by each rabbit was tested, higher titer was observed in case of the immunization with the adjuvant. By use of the antiserum showing the highest titer (1:16,000) and its purified antibodies, competitive indirect and direct ELISA's (ciELISA and cdELISA) were established, respectively. When the cross-reactivity of the antibody against fumonisin analogs was investigated by the ciELISA, it was very low against $B_3$ (2%) but high against fumonisin $B_2$ (179%). The sensitivity of the ELISAs was also very high, because the detection limit for $FB_1$ was 0.03 ppb in ciELISA and 0.3 ppb in cdELISA. When the ELISA's were applied to the spiked corns after extraction with 75% methanol, the assay recovery of $FB_1$ was too unstable to assay. However, when cleanup by strong anion exchange (SAX) cartridge was introduced to remove interfering materials, the mean ELISA recovery of $FB_1$ from corns spiked to 3~10 ppm was found to be 34.0% and stable (mean of CV, 8.2%).

  • PDF

Rapid Detection Method for Fusaric Acid-producing Species of Fusarium by PCR (후자린산(Fusaric acid) 생성 Fusarium 종의 신속 검출 PCR)

  • Lee, Theresa;Kim, Sosoo;Busman, Mark;Proctor, Robert H.;Ham, Hyeonhui;Lee, Soohyung;Hong, Sung Kee;Ryu, Jae-Gee
    • Research in Plant Disease
    • /
    • v.21 no.4
    • /
    • pp.326-329
    • /
    • 2015
  • Fusaric acid is a mycotoxin produced by species of the fungus Fusarium and can act synergistically with other Fusarium toxins. In order to develop a specific detection method for fusaric acid-producing fungus, PCR primers were designed to amplify FUB10, a transcription factor gene in fusaric acid biosynthetic gene cluster. When PCR with Fub10-f and Fub10-r was performed, a single band (~550 bp) was amplified from F. oxysporum, F. proliferatum, F. verticillioides, F. anthophilum, F. bulbicola, F. circinatum, F. fujikuroi, F. redolens, F. sacchari, F. subglutinans, and F. thapsinum, all of which were known for fusaric acid production. Whereas the FUB10 specific band was not amplified from Fusarium species known to be trichothecene producer. Because production of fusaric acid can co-occur in species that also produce fumonisin mycotoxins, we developed a multiplex PCR assay using the FUB10 primers as well as primers for the fumonisin biosynthetic gene FUM1. The assay yielded amplicons from fumonisin producers such as F. proliferatum and F. verticillioides, allowing for the simultaneous detection of species with the genetic potential to produce both types of mycotoxins.

Occurrence and Decontamination of Mycotoxins in Swine Feed

  • Chaytor, Alexandra C.;Hansen, Jeff A.;Van Heugten, Eric;See, M. Todd;Kim, Sung-Woo
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.24 no.5
    • /
    • pp.723-738
    • /
    • 2011
  • Contamination of agricultural crops by mycotoxins results in significant economic losses for grain producers and, when consumed, it can cause reduced growth and health in a wide range of animal species. Hundreds of mycotoxin producing molds exist, however each has a different frequency and pattern of occurrence, as well as differences in the severity of the diseases (mycotoxicoses) they cause. Among the mycotoxins considered to be major contaminates are aflatoxin, deoxynivalenol, fumonisin, ochratoxin, and zearalenone. Although a multitude of species can be harmed by consumption of these mycotoxins, swine appear to be the most commonly affected commodity species. The swine industry can thus experience great losses due to the presence of mycotoxin contamination in feeds. Subsequently, recognition and prevention of mycotoxicoses is extremely important and dependent on adequate grain sampling and analysis methods pre-harvest, as well as effective strategies post-harvest to reduce consumption by animals. The aim of this review is to provide an overview of the major mycotoxin contaminants in grains, to describe methods of analysis and prevention to reduce mycotoxicoses in swine and other animals, and finally to discuss how mycotoxins directly affect swine production.

Isolation and Identification of Fungi and Yeast Contaminated in Rice Cake (Garaetteok) (가래떡에 오염된 곰팡이와 효모의 분리 동정)

  • Jo, Ah-Hyeon;Kim, Jung-Beom
    • Journal of Food Hygiene and Safety
    • /
    • v.37 no.1
    • /
    • pp.9-14
    • /
    • 2022
  • The purpose of this study was to analyze the hazard of fungi in Garaetteok (Korean rice cake) by isolating and identifying of fungi contaminated with Garaetteok and investigating the possibility of mycotoxin production. Garaetteok used in this study were the ones that were returned back to the manufacturers in Jeollanam-do due to the presence of foreign matters presumed to be fungi. The fungi foreign matter was collected and inoculated on Potato dextrose agar, Malt extract agar, and Czapek yeast extract agar, and then cultured at 25℃ for 7 days. The micro-structure was observed under an optical microscope for the colonies in which pure isolation was confirmed. The gene sequencing of the product of amplified PCR was analyzed using the ITS primer. Colony-1 and 2 maintained the same properties in each tray, confirming that they were purely isolated. Budding cells were observed from the Colony-1, thus, it was determined to be yeast. Colony-2 was determined to be a fungus that belongs to Fusarium spp. as fusiform conidia were observed. As a result of gene sequencing, a total of 76 cases of fungi of Fusarium spp. were found, among which Fusarium solani was the most observed cases (53 cases). From the morphological and genetic identification, Colony-2 was identified as Fusarium spp., specifically, Fusarium solani. The fungi found in Fusarium spp. produce mycotoxins such as nivalenol, zearalenone, and fumonisin, which may cause vomiting, diarrhea, and cancer. Conclusively, the results confirm the possibility of mycotoxin production by Fusarium spp. isolated from Garaetteok. Consequently, when an unknown fungus was found, it is necessary to isolate and identify the fungus, determine whether it is a mycotoxin producing species, and strengthen relative administrative measures, accordingly.

Climate change and resilience of biocontrol agents for mycotoxin control

  • Magan, Naresh;Medina, Angel
    • 한국균학회소식:학술대회논문집
    • /
    • 2018.05a
    • /
    • pp.41-41
    • /
    • 2018
  • There has been an impetus in the development of biocontrol agents (BCAs) with the removal of a number of chemical compounds in the market, especially in the European Union. This has been a major driver in the development of Integrated Pest Management systems (IPM) for both pest and disease control. For control of mycotoxigenic fungi, there is interest in both control of colonization and more importantly toxin contamination of staple food commodities. Thus the relative inoculum potential of biocontrol agent vs the toxigenic specie sis important. The major bottlenecks in the production and development of formulations of biocontrol agents are the resilience of the strains, inoculum quality and formulation with effective field efficacy. It was recently been shown for mycotoxigenic fungi such as Aspergillus flavus, under extreme climate change conditions, growth is not affected although there may be a stimulation of aflatoxin production. Thus, the development of resilient biocontrol strains which can may have conserved control efficacy but have the necessary resilience becomes critical form a food security point of view. Indeed, under predicted climate change scenarios the diversity of pests and fungal diseases are expected to have profound impacts on food security. Thus, when examining the identification of potential biocontrol strains, production and formulation it is critical that the resilience to CC environmental factors are included and quantified. The problems in relation to the physiological competence and the relative humidity range over which efficacy can occur, especially pre-harvest may be increase under climate change conditions. We have examined the efficacy of atoxigenic strains of A. flavus and Clanostachys rosea and other candidates for control of A. flavus and aflatoxin contamination of maize, and for Fusarium verticillioides and fumonisin toxin control. We have also examined the potential use of fluidized-bed drying, nanoparticles/nanospheres and encapsulation approaches to enhance the potential for the production of resilient biocontrol formulations. The objective being the delivery of biocontrol efficacy under extreme interacting climatic conditions. The potential impact of climate change factors on the efficacy of biocontrol of fungal diseases and mycotoxins are discussed.

  • PDF

Mating Behavior, Mycotoxin Production, and Vegetative Compatibility of Gibberella fujikuroi Species Complex from Sorghum in Korea

  • Lim, Sun-Hee;Yun, Sung-Hwan;Lee, Yin-Won
    • The Plant Pathology Journal
    • /
    • v.17 no.5
    • /
    • pp.276-280
    • /
    • 2001
  • Fusarium isolates of Gibberella fujikuroi species complex were obtained from sorghum grown in five provinces of Korea in 1996 and 1997. These isolates were characterized based on their mating behavior, mycotoxin production, and vegetative compatibility. Only three mating populations (A, D, and F) were recovered from a total of 155 isolates examined. The relative frequency of the mating populations was significantly different: F was predominant (80%), while D and A were observed at low frequencies of 9% and 3%, respectively. Female fertile isolates were more common within F (44 our of 124) than D (2 out of 14), while none of the five A isolates were female fertile. The inbreeding effective population sizes ($\textrm{N}_e$)for mating type and male/hermaphrodite ratios in mating populations A and D produced significant amounts of fumonisins, while F isolates produced none or only traces of fumonisin B$_1$. In contrast. F isolates produced higher amounts of moniliformin (average of 3,820 ppm) than A and D isolates (averages of 77 and 1,819 ppm, respectively). Fifty-one isolates were tested for vegetative compatibility using nitrogen non-utilization mutants of each isolate, and 44 vegetative compatibility groups (VCGs) were identified. A single VC type (VC1) was found in all of the five A isolates examined. Six of the D isolates examined consisted of three VC types: two for VC2, two for VC3, and the rest for VC4. All of the F isolates tested were incompatible in every combination and , thus, each constituted a unique VCG.

  • PDF

Method Development for Determination of Multi-Mycotoxins in Chicken Liver and Kidney Tissues by LC-MS/MS (LC-MS/MS를 이용한 닭 간과 신장 중 곰팡이 독소 6종 동시분석법 개발)

  • Kim, Soohee;Kim, Kwang-Nam;Kim, Hyobi;Song, Jae-Young;Park, Sung-Won
    • Korean Journal of Poultry Science
    • /
    • v.43 no.2
    • /
    • pp.111-118
    • /
    • 2016
  • Mycotoxins are secondary metabolites produced by molds, such as Aspergillus, Fusarium and Penicillium, that have adverse effects on animals and humans. Aflatoxin, ochratoxin, zearalenone, fumonisin and deoxynivalenol are the mycotoxins of greatest agro-economic importance and cause acute disease called mycotoxicoses. Mycotoxicosis in poultry birds results in decreased meat/egg production, immunosuppressant, and hepatotoxicosis. Some of toxins or their metabolites may be retained in animal or human tissues and induce health problems. This study was designed to develop a sensitive liquid chromatography tandem mass spectrometry (LC-MS/MS) method for the simultaneous detection and quantification of mycotoxins, such as aflatoxin $B_1$, aflatoxin $M_1$, ochratoxin A, zearalenone, fumonisin B and deoxynivalenol, in chicken liver and kidney tissues. The mycotoxins were extracted and purified using modified QUECHERS methods, separated by LC and detected by an electrospray ionisation interface (ESI) and tandem MS. Good precision and linearity were observed for most of six mycotoxins. The recovery test for each mycotoxin in liver and kidney tissues mostly indicated good average recovery rates between 80.94% and 98.10% and the coefficient of variation mostly under 13.78%, except for aflatoxin $M_1$ and fumonisin $B_1$. The limit of detection (LOD) for six mycotoxins was $7.6{\sim}145.79{\mu}g/kg$ in liver tissues and $6.07{\sim}197.20{\mu}g/kg$ in kidney tissues. The quantification limits (LOQ) for 6 mycotoxins were in the range $23.04{\sim}441.78{\mu}g/kg$ in liver tissues and $18.40{\sim}597.59{\mu}g/kg$ in kidney tissues, respectively. The developed multi-mycotoxin method in this study permits simultaneous, simple, and rapid determination of several co-existing mycotoxins in chicken liver and kidney tissues.

Toxigenic Mycobiota of Small Grain Cereals in Korea

  • Lee, Theresa
    • 한국균학회소식:학술대회논문집
    • /
    • 2016.05a
    • /
    • pp.33-33
    • /
    • 2016
  • Mycotoxins are toxic secondary metabolites produced by fungi. They can be present in where agricultural-based commodities are contaminated with toxigenic fungi. These mycotoxins cause various toxicoses in human and livestock when consumed. Small grains including corn, barley, rice or wheat are frequently contaminated with mycotoxins due to infection mainly by toxigenic Fusarium species and/or under environment favorable to fungal growth. One of the most well-known Fusarium toxin groups in cereals is trichothecenes consisting of many toxic compounds. Deoxynivalenol (DON), nivalenol (NIV), T-2 toxin, and various derivatives belong to this group. Zearalenone and fumonisin (FB) are also frequently produced by many species of the same genus. In order to monitor Korean cereals for contamination with Fusarium and other mycotoxigenic fungal species as well, barley, corn, maize, rice grains, and soybean were collected from fields at harvest or during storage for several years. The fungal colonies outgrown from the grain samples were identified based on morphological and molecular characteristics. Trichothecene chemotypes of Fusarium species or presence of FB biosynthetic gene were determined using respective diagnostic PCR to predict possible toxin production. Heavy grain contamination with fungi was detected in barley, rice and wheat. Predominant fungal genus of barley and wheat was Alternaria (up to 90%) while that of rice was Fusarium (~40%). Epicoccum also appeared frequently in barley, rice and wheat. While frequency of Fusarium species in barley and wheat was less than 20%, the genus mainly consisted of Fusarium graminearum species complex (FGSC) which known to be head blight pathogen and mycotoxin producer. Fusarium composition of rice was more diverse as FGSC, Fusarium incarnatum-equiseti species complex (FIESC), and Fusarium fujikuroi species complex (FFSC) appeared all at considerable frequencies. Prevalent fungal species of corn was FFSC (~50%), followed by FGSC (<30%). Most of FFSC isolates of corn tested appeared to be FB producer. In corn, Fusarium graminearum and DON chemotype dominate within FGSC, which was different from other cereals. Soybeans were contaminated with fungi less than other crops and Cercospora, Cladosporium, Alternaria, Fusarium etc. were detected at low frequencies (up to 14%). Other toxigenic species such as Aspergillus and Penicillium were irregularly detected at very low frequencies. Multi-year survey of small grains revealed dominant fungal species of Korea (barley, rice and wheat) is Fusarium asiaticum having NIV chemotype.

  • PDF