• Title/Summary/Keyword: fully hydrogenated soybean oil

Search Result 6, Processing Time 0.016 seconds

Effect of Random Interesterification on the Physicochemical Properties in Blends of Corn Germ Oil and Fully Hydrogenated Soybean Oil (옥수수기름과 극도경화대두 혼합유의 이화학적 성질에 대한 무작위 에스테르 교환의 영향)

  • Shin, Hyo-Sun;Chung, Kwang-Hyun;Chun, Je-Hyun
    • Korean Journal of Food Science and Technology
    • /
    • v.23 no.3
    • /
    • pp.360-365
    • /
    • 1991
  • Effect of random interesterification on the physicochemical properties in blends of corn germ oil and fully hydrogenated soybean oil was studied. Interesterification by using 0.4% sodium methoxide at $80^{\circ}C$ was completed in 35 minutes as determined by HPLC analysis for triglyceride composition. Changes of melting point, solid fat content, crystal form, fatty acid and triglyceride composition was investigated. After the interesterification, melting point and solid fat content were decreased, and coarse and large crystals were modified to fine and uniform. Fatty acid composition was not altered but triglyceride composition was largely altered. Interesterified blends of corn germ oil and fully hydrogenated soybean oil made with 80%, 20% and 75%. 25%, respectively, had desirable characteristics of the margarine for home use.

  • PDF

Characterization of Low-Trans Solid Fat from Canola and Fully Hydrogenated Soybean Oil by Lipase-Catalyzed Interesterification Reaction (효소적 에스테르 교환 반응 시 카놀라유와 대두극도경화유의 비율에 따른 저트랜스 고체지방의 특성)

  • Kim, Young-Joo;Lyu, Hyun-Kyeong;Lee, Seon-Mo;Lee, Ki-Teak
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.39 no.9
    • /
    • pp.1320-1327
    • /
    • 2010
  • Lipase-catalyzed interesterification of canola (CO) and fully hydrogenated soybean oil (FHSBO) at different weight ratios (70:30, 75:25, and 80:20) was performed in a batch type reactor to produce low-trans solid fats. Each reaction was conducted in the shaking water bath for various reaction times (1, 3, 6, 18 and 24 hr) at 70oC and 220 rpm using Lipozyme TLIM (20 wt% of total substrate) from Thermomyces lanuginosus. After 24 hr reaction, solid fat content (SFC) by differential scanning calorimetry (DSC), fatty acid and triacylglycerol (TAG) composition of low-trans solid fats were determined. SFC of the products was reduced when the content of canola oil in the reaction mixture was increased. Major fatty acids were stearic acid (C18:0), oleic acid (C18:1) and linoleic acid (C18:2). Trans fatty acid content in the low-trans solid fats showed less than 0.3 wt%. In the HPLC analysis, major TAG species showed LOO (linoleyl-oleoyl-oleoyl), OOO, POO/SOL, SOO, and SOS.

Enzymatic Synthesis of Low-trans Fats Containing Conjugated Linoleic Acids and Their Physicochemical Characteristics (Conjugated Linoleic Acid(CLA)를 함유한 기능성 저트랜스 유지의 효소적 합성 및 이화학적 특성 연구)

  • Nam, Ha-Young;Lee, Ki-Teak
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.37 no.6
    • /
    • pp.752-760
    • /
    • 2008
  • Scale-up production of low-trans fat containing conjugated linoleic acid (CLA-TFO) was performed through lipase-catalyzed synthesis. Blend of fully hydrogenated soybean oil, olive oil containing conjugated linoleic acid and palm oil with 1:2:7 ratio was interesterified through Lipozyme RM IM in the 1 L-batch type reactor at $65^{\circ}C$ for 12 hrs, and the physicochemical and melting properties of CLA-TFO were compared with conventional (high trans fat) or commercial low-trans fat shortening. The trans fatty acids content in the conventional shortening (48.8 area%) was much higher than that of low-trans shortening (0.4 area%) and CLA-TFO (0.3 area%+CLA; 7.6 area%). Acid, saponification and iodine values of CLA-TFO were 0.4, 173.9 and 59.0, respectively. Their ${\alpha}$-, ${\gamma}$-tocopherol contents showed 4.7, 1.0 mg/100 g. Differences were observed in the solid fat contents (SFC), melting point of the conventional or low-trans fat and CLA-TFO. Each SFC of conventional, low-trans fat and CLA-TFO was 32.0, 29.3 and 30.4% with melting point of 38.5, 43.0 and $39.5^{\circ}C$ at $35^{\circ}C$, respectively. In texture profile analysis, hardness of conventional, low-trans fat and CLA-TFO was 111.7, 75.2 and 63.8 g.

Enzymatic Interesterification and Melting Characteristic for Asymmetric 1,2-Distearoyl-3-Oleoyl-rac-Glycerol Triacylglycerol Enriched Product (효소적 반응을 이용한 비대칭형 1,2-Distearoyl-3-Oleoyl-rac-Glycerol 혼합물의 생성 및 융점 특성)

  • Kim, Jin Young;Lee, Ki Teak
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.43 no.1
    • /
    • pp.93-101
    • /
    • 2014
  • Asymmetric 1,2-distearoyl-3-oleoyl-rac-glycerol (SSO) triacylglycerol (TAG) is used as a cocoa butter replacer (CBR). In this study, it was produced by lipase-catalyzed interesterification of fully hydrogenated soybean oil (FHSBO) and oleic ethyl ester (OEE) in a batch type reactor at $75^{\circ}C$, 250 rpm. Different molar ratios (FHSBO : OEE=1:1, 1:2 and 1:3, w/w) and various reaction times (1, 2, 3, 4, and 5 hr) were also tested. The optimized condition for SSO was a FHSBO : OEE molar ratio of =1:1 at reaction times of 2, 3, 4, and 5 hr. Enzymatic synthesis generated SSO/SOS, as well as the other TAGs (e.g., PSO/POS, SOO/OSO, SSS), ethyl esters, monoacylglycerol (MAG), and diacylglycerol (DAG). After scale-up, fractionation by solvent (methanol and acetone) fractionation and column chromatography was applied. To reduce ethyl esters, high-melting TAGs (e.g., SSS), and SOO/OSO in reactants, solvent fractionation was applied. Using a silica gel column (sample : silica gel=2:1, wt%), MAG and DAG were removed at $25^{\circ}C$. The major fatty acid composition of the final products (with a high SSO/SOS content) was palmitic acid (C16:0, 10.9~12.9 area%), stearic acid (C18:0, 52.2~54.9 area%), and oleic acid (C18:1, 34.2~35.5 area%). In reversed-phase HPLC analysis, the major TAG species of the final product (FHSBO : OEE=1:1, 2 hr) were SSO/SOS (82.31 area%) and PSO/POS (14.51 area%). Based on the $[SS]^+$ : $[SO]^+$ ratio obtained by RP-HPLC/APCI-MS, the final product had a higher SSO (AAB type TAG) content than cocoa butter (CB). The solid fat index (SFI) of CB and the final product obtained were similar with a narrow melting point range around ~32 to $35^{\circ}C$.

Development and Physical Properties of Low-Trans Spread Fat from Canola and Fully Hydrogenated Soybean Oil by Lipase-Catalyzed Synthesis (카놀라유와 대두극도경화유로부터 효소적으로 합성된 저트랜스 스프레드 고체지의 특성)

  • Kim, Young-Joo;Lyu, Hyun-Kyeong;Shin, Jung-Ah;Lee, Ki-Teak
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.39 no.9
    • /
    • pp.1328-1334
    • /
    • 2010
  • Low-trans spread fat (LTSF) was produced by lipase-catalyzed synthesis of canola (CO) and fully hydrogenated soybean oil (FHSBO) at 65:35 (w/w). Blend of CO and FHSBO with 65:35 ratio was interesterified using Lipozyme TLIM (immobilized Thermomyces lanuginosus, 20% of total substrate) in a 1 L-batch type reactor at $70^{\circ}C$ with 500 rpm for 24 hr. Then, physicochemical melting properties of LTSF were compared with commercial spread fat. At $20^{\circ}C$, solid fat contents (SFC) of commercial spread fat as a control and LTSF were similar, showing 19.1 and 18.1%, respectively. Major compositional fatty acids of LTSF were C18:0, C18:1 and C18:2 (29.2, 41.8 and 13.3 wt%, respectively). Trans fatty acid content of the LTSF (0.2 wt%) was lower than that of commercial spread fat (5.5 wt%). In the RP-HPLC analysis from LTSF, major triacylglycerol (TAG) molecules were SOL (stearoyl-oleoyl-linoleyl), SOO, POS/PSP, and SOS. Also, polymorphic form and x-ray diffraction of LTSF showed coexistence of $\beta$' and $\beta$ form crystals.

Development and Characterization of Trans Free Margarine Stock from Lipase-Catalyzed Interesterification of Avocado and Palm Oils (팜유와 아보카도유로부터 효소적 interesterification을 통한 trans free margarine stock 제조 및 이화학적 특성 연구)

  • Lee, Yun-Jeung;Lee, Ki-Teak
    • Korean Journal of Food Science and Technology
    • /
    • v.41 no.3
    • /
    • pp.231-237
    • /
    • 2009
  • Trans free margarine stock (TFMS) was produced by lipase-catalyzed synthesis of fully hydrogenated soybean oil (FHSBO), avocado oil (AO) and palm oil (PO). A blend of FHSBO, AO, and PO with a 1:5:4 (30:150:120 g, respectively) ratio was interesterified with lipozyme RM IM(from Rhizomucor miehei) in a 1 L-batch type reactor at 65 for 12 hr, and the physicochemical and melting properties of TFMS were compared with commercial margarine. The solid fat content (%) of the TFMS was analyzed at 25, 30, and $35^{\circ}C$, respectively, while its melting point was $37.8^{\circ}C$. The trans fatty acid content of the TFMS was below 0.1%. It also had acid, saponification, and iodine values of 0.4, 173.9, and 58.6, respectively. In HPLC chromatograms of the TFMS, newly synthesized peaks of triacylglycerol molecules were observed by using reverse-phase HPLC with evaporative light-scattering detection. Normal-phase HPLC with UV detection was used to quantify tocopherols in the TFMS, indicating that its ${\alpha}-$, ${\gamma}-$ and ${\delta}$-tocopherol contents were 5.7, 2.1, and 1.7 mg/100 g, respectively.