• Title/Summary/Keyword: full-scale measurements

Search Result 149, Processing Time 0.023 seconds

The Effect of Uncertainty in Sea Trial Measurement System on Speed-Power Performance

  • Seo, Dae-Won;Noh, Jackyou
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.26 no.3
    • /
    • pp.269-276
    • /
    • 2020
  • Sea trial tests are necessary to verify speed-power performance, and are an import contract between ship owners and shipyards. The International Organization for Standardization (ISO) published ISO 15016:2015, which specifies the correlation method between model and full-scale ships. The results of sea trials have been questioned because of the uncertainty of speed and power measurements, especially when sea conditions differ from ideal calm water conditions. In this paper, such uncertainties were investigated by utilizing the standard speed-power trial analysis procedure defined in ISO 15016:2015 through Monte Carlo simulations. It was found that the expanded uncertainty of the delivered power (PDid) at 95 % confidence interval (k = 2) was ±1.5 % under 75 % MCR conditions.

Multi-stage approach for structural damage identification using particle swarm optimization

  • Tang, H.;Zhang, W.;Xie, L.;Xue, S.
    • Smart Structures and Systems
    • /
    • v.11 no.1
    • /
    • pp.69-86
    • /
    • 2013
  • An efficient methodology using static test data and changes in natural frequencies is proposed to identify the damages in structural systems. The methodology consists of two main stages. In the first stage, the Damage Signal Match (DSM) technique is employed to quickly identify the most potentially damaged elements so as to reduce the number of the solution space (solution parameters). In the second stage, a particle swarm optimization (PSO) approach is presented to accurately determine the actual damage extents using the first stage results. One numerical case study by using a planar truss and one experimental case study by using a full-scale steel truss structure are used to verify the proposed hybrid method. The identification results show that the proposed methodology can identify the location and severity of damage with a reasonable level of accuracy, even when practical considerations limit the number of measurements to only a few for a complex structure.

Highway bridge live loading assessment and load carrying capacity estimation using a health monitoring system

  • Moyo, Pilate;Brownjohn, James Mark William;Omenzetter, Piotr
    • Structural Engineering and Mechanics
    • /
    • v.18 no.5
    • /
    • pp.609-626
    • /
    • 2004
  • The Land Transport Authority of Singapore has a continuing program of highway bridge upgrading, to refurbish and strengthen bridges to allow for increasing vehicle traffic and increasing axle loads. One subject of this program has been a short span bridge taking a busy highway across a coastal inlet near a major port facility. Experiment-based structural assessments of the bridge were conducted before and after upgrading works including strengthening. Each assessment exercise comprised two separate components; a strain and acceleration monitoring exercise lasting approximately one month, and a full-scale dynamic test carried out in a single day. This paper reports the application of extreme value statistics to estimate bridge live loads using strain measurements.

A Study on the Reduction of Formaldehyde and VOCs by Positions of Foreign Plants (외국식물의 배치변화에 따른 폼알데하이드와 VOCs 농도저감에 관한 연구)

  • Song, Jeong Eun;Kim, Yong Shik;Sohn, Jang Yeul
    • KIEAE Journal
    • /
    • v.8 no.2
    • /
    • pp.53-58
    • /
    • 2008
  • With architectural technology, a building has been a far dense and close. So the thermal environment of the building has become pleasant, but the quality of indoor air has been degraded. Using synthetic products for construction materials and furniture indoors escalates the concentration of volatile organic compounds(VOCs) at indoor air, threatening the health of the residents. To reduce the concentration of volatile organic compounds at indoor air, many methods are designed, and of late, concern has been increased about the effect of air purification using air purifying plants. Field measurements were performed using Aglaonema brevispathum, Pachira aquatica and Ficus benjamiana, which were verified as air-purifying plants by NASA. The effect of reducing the concentration of air contaminants by plant studied in a full scale mock-up model. The variations of concentration of Benzene, Toluene, Ethylbenzene and Formaldehyde were monitored. In most cases, the effect was excellent in Toluene and formaldehyde in summer.

Measuring hull girder deformations on a 9300 TEU containership

  • Koning, Jos;Schiere, Marcus
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.6 no.4
    • /
    • pp.1111-1129
    • /
    • 2014
  • A 9300 TEU container carrier was equipped in 2006 with instrumentation aimed at wave induced accelerations, and motions. In 2010 the system was extended with strain sensors to include structural loads. Section loads for vertical bending could be readily obtained but the originally intended derivation of horizontal bending and torsion from the measured strains was found to be unreliable. This paper addresses an alternative approach that was adopted in the post processing of results. In particular the concept to use acceleration sensors to capture global hull deformations along the length of the hull, and the use of a data fusion procedure to obtain section loads from combined sensor data and finite element calculations. The approach is illustrated by comparison of actually measured accelerations and local strains with values obtained from the data fusion model. It is concluded that the approach is promising but in need of further validation and development. In particular the number and shapes of the modes used may not have been sufficient to represent the true deflection and thus strain distributions along the high loaded areas.

FEM simulation of a full-scale loading-to-failure test of a corrugated steel culvert

  • Wadi, Amer;Pettersson, Lars;Karoumi, Raid
    • Steel and Composite Structures
    • /
    • v.27 no.2
    • /
    • pp.217-227
    • /
    • 2018
  • This paper utilizes 3D FEM to provide deeper insights about the structural behaviour of a 6.1 m span steel culvert, which was previously tested under extreme loading. The effect of different input parameters pertaining to the backfill soil has been investigated, where the structural response is compared to field measurements. The interface choice between the steel and soil materials was also studied. The results enabled to realize the major influence of the friction angle on the load effects. Moreover, the analyses showed some differences concerning the estimation of failure load, whereas reasons beyond this outcome were arguably presented and discussed.

Thrust - Performance Test of Ethylene-Oxygen Single-Tube Pulse Detonation Rocket

  • Hirano, Masao;Kasahara, Jiro;Matsuo, Akiko;Endo, Takuma;Murakami, Masahide
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.205-210
    • /
    • 2004
  • The pulse detonation engine (PDE) has recently expected as a new aerospace propulsion system. The PDE system has high thermal efficiency because of its constant-volume combustion and its simple tube structure. We measured thrust of single-tube pulse detonation rocket (PDR) by two methods using the PDR-Engineering Model (full scale model) for ground testing. The first involved measuring the displacement of the PDR-EM by laser displacement meter, and the second involved measuring the time-averaged thrust by combining a load cell and a spring-damper system. From these two measurements, we obtained 130.1 N of time-averaged thrust, which corresponds to 321.2 sec of effective specific impulse (ISP). As well, we measured the heat flux in the wall of PDE tubes. The heat flux was approximately 400 ㎾/$m^2$. We constructed the PDR-Flight Mode] (PDR-FM). In the vertical flight test in a laboratory, the PDR-FM was flying and keeping its altitude almost constant during 0.3 sec.

  • PDF

Probability of exceeding the serviceability limit of antenna masts

  • Kammel, Christian
    • Wind and Structures
    • /
    • v.4 no.4
    • /
    • pp.353-366
    • /
    • 2001
  • With respect to serviceability, antenna masts should be designed so that wind-induced motion will not cause unacceptable lack of transmission for broadcasting users and wireless communication. For such antenna masts with directional radio transmission the serviceability limit state is predominantly governed by the tolerable change of the broadcasting angle of the mounted antenna assembly and therefore by the tip distortion of the mast. In this paper it will be shown that refinements of the present state of design of antenna masts are possible by using the statistics of extremes applied to extreme wind situations and by consideration of the statistical and reliability requirements given by the operator such as frequency and return period of passing the serviceability limit.

Relationship Between Antigravity Control and Postural Control in Normal Children (정상 아동의 반중력 조절과 자세 조절간의 상관 관계)

  • Cho, Jeong-Ar;Choi, Sun-Hee;Kim, Jung-Min
    • Physical Therapy Korea
    • /
    • v.1 no.1
    • /
    • pp.35-46
    • /
    • 1994
  • The purposes of this study were 1) to determine the relationship between antigravity control(supine flexion and prone extension) and postural control(static and dynamic balance) by age, 2) to determine the quality of antigravity and postural control, and 3) to determine whether sex difference correlates with differences in antigravity and postural control in young normal children. We tested 120 children aged 4 to 7 years. The study results showed a significant relationship between antigravity and postural control by age. Quality scale measurements(r=0.90) indicated that the children in this study had not yet developed full antigravity or postural control. The study results revealed differences between sexes(f>m in 5 of 7 tests) and a significant relationship by age in antigravity and postural control.

  • PDF

Impinging jet simulation of stationary downburst flow over topography

  • Mason, M.S.;Wood, G.S.;Fletcher, D.F.
    • Wind and Structures
    • /
    • v.10 no.5
    • /
    • pp.437-462
    • /
    • 2007
  • A non-translating, long duration thunderstorm downburst has been simulated experimentally and numerically by modelling a spatially stationary steady flow impinging air jet. Velocity profiles were shown to compare well with an upper-bound of velocity measurements reported for full-scale microbursts. Velocity speed-up over a range of topographic features in simulated downburst flow was also tested with comparisons made to previous work in a similar flow, and also boundary layer wind tunnel experiments. It was found that the amplification measured above the crest of topographic features in simulated downburst flow was up to 35% less than that observed in boundary layer flow for all shapes tested. From the computational standpoint we conclude that the Shear Stress Transport (SST) model performs the best from amongst a range of eddy-viscosity and second moment closures tested for modelling the impinging jet flow.