• 제목/요약/키워드: full-scale beams

검색결과 125건 처리시간 0.022초

유리섬유쉬트에 의한 실물모형 RC보의 보강매수별 휨 보강효과 (Flexural Strengthening with Multi-Layer GFRP Sheets on Full-Scale RC Beams)

  • 유영찬;최기선;김긍환
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2005년도 추계 학술발표회 제17권2호
    • /
    • pp.177-180
    • /
    • 2005
  • The specified tensile strength provided by the manufacturer is determined on the basis of the reliable lower limit ($X-3{\sigma}$ : X=average tensile strength, $\sigma$=standard deviation) obtained from the material test results. Most of these data, however, are based on the test results of 1 layer of FRP sheet. Also, the partial strength reduction factor for strengthening RC members with FRP is based on the small-scale model tests. But, the failure mechanisms of small-scale model tests are reported to be different from those of the full-scale tests. This paper present the test results of full-scale RC beams strengthened with multi-layer GFRP sheets up to 3 layer as well as the material tests. From the material tests, it was observed that the average tensile strengths of GFRP sheets are decreased as the number of layer are increased. Also the premature debonding failure of RC beams strengthened with multi-layer GFRP sheets are observed in inverse proportion to the number of GFRP sheets

  • PDF

Shear Strength of Prestressed Steel Fiber Concrete I-Beams

  • Tadepalli, Padmanabha Rao;Dhonde, Hemant B.;Mo, Y.L.;Hsu, Thomas T.C.
    • International Journal of Concrete Structures and Materials
    • /
    • 제9권3호
    • /
    • pp.267-281
    • /
    • 2015
  • Six full-scale prestressed concrete (PC) I-beams with steel fibers were tested to failure in this work. Beams were cast without any traditional transverse steel reinforcement. The main objective of the study was to determine the effects of two variables-the shear-span-to-depth ratio and steel fiber dosage, on the web-shear and flexural-shear modes of beam failure. The beams were subjected to concentrated vertical loads up to their maximum shear or moment capacity using four hydraulic actuators in load and displacement control mode. During the load tests, vertical deflections and displacements at several critical points on the web in the end zone of the beams were measured. From the load tests, it was observed that the shear capacities of the beams increased significantly due to the addition of steel fibers in concrete. Complete replacement of traditional shear reinforcement with steel fibers also increased the ductility and energy dissipation capacity of the PC I-beams.

철근콘트리트 보에서 체단된 철근의 효과에 관한 연구 실물 및 축소모형실험을 중심으로 (Effect of Cutting Off Tension Bars in R/C Beams On the Full Scale and Model Specimens)

  • 이리형;최창식;임재형
    • 콘크리트학회지
    • /
    • 제2권1호
    • /
    • pp.79-90
    • /
    • 1990
  • 철근 콘크리트 보의 인장철근이 합리적인 위치에서 체단(Cutoff)되지 않으며, 응력집중 및 부재의 극한강도가 저하되는 등의 문제가 발생될 수 있다. 따라서, 본 연구에서는 이러한 상황에 부합되는 실제건물을 대상으로 실물크기(Full Scale) 및 모형 실험을 함으로써 체단점에서 발생되는 파괴양상과 휨 강도, 실물, 시험체와 모형 시험체의 파괴 진전 상황등을 비교\ulcorner분석하고, 동시에 유한요소법에 의한 해석을 통하여 인장응력 분포 상태등을 검토함으로써 보 설계시 인장철근의 체단등에 관한 기토자료를 제공하고자 하였다. 실험 및 해석의 결과로부터, 체단부가 지점쪽으로 멀리 있을수록 최대내력의 감소는 물론 인장응력의 집중현상등이 나타나고 있는 바, 보부재의 설계시 인장철의 체단보에 대해서는 세심한 주의가 필여하리라 사료된다.

실물모형 실험에 의한 탄소섬유쉬트 보강 RC 보의 휨 부착거동 (Flexural Adhesive Behavior of Full-scale RC Beams Strengthened by Carbon Fiber Sheets)

  • 최기선;류화성;최근도;이한승;유영찬;김긍환
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2001년도 가을 학술발표회 논문집
    • /
    • pp.1003-1008
    • /
    • 2001
  • It is recently reported that bond failure can be initiated in the region where maximum bending moment and shear force is acted by accompanying shear deformation after flexural crack in full-scale RC beams strengthened by CFRP. Such a shear deformation effect causing bond failure is relatively little in the case of small-scale specimens. So, additional reinforcing details to the critical beam section where maximum moment and shear were acted is required to prevent the bond failure caused by the shear deformations. The U-type wrapping methods by CFRP to the critical beam section is proposed and tested in this paper. Also, the applicability of design bond strength derived from the tests of small-scale beam was investigated by the full-scale RC beam strengthened by CFRP.

  • PDF

Effect of Multi-Layer Carbon Fiber Sheet Used for Strengthening Reinforced Concrete Beams

  • You Young-Chan;Choi Ki-Sun;Kim Keung-Hwan
    • 콘크리트학회논문집
    • /
    • 제17권1호
    • /
    • pp.149-155
    • /
    • 2005
  • The purpose of this study is to investigate the flexural strengthening effects of CF(Carbon Fiber) sheet for the full-scale RC beams with multi-layer CF sheets. The partial strength reduction factors of CF sheets are suggested from the full-scale RC beams tests strengthened with multi-layer CF sheets up to six layers as well as material tests. From the material tensile tests, it was observed that the average tensile strengths of CF sheets per layer are decreased as the number of CF sheets is increased. Also the steep strength reductions of CF sheets in material test results at rupture are observed compared with the structural tests results for the full-scale RC beams strengthened with multi-layer CF sheets. Finally, the partial strength reduction factors far CF sheets up to six layers are suggested considering the effects of multi-layer and unit weight of CF sheets.

Numerical study on the deflections of steel-concrete composite beams with partial interaction

  • Mirambell, Enrique;Bonilla, Jorge;Bezerra, Luciano M.;Clero, Beatriz
    • Steel and Composite Structures
    • /
    • 제38권1호
    • /
    • pp.67-78
    • /
    • 2021
  • The use of composite beams with partial interaction, with less shear connectors than those required for full interaction, may be advantageous in many situations. However, these beams tend to show higher deflections compared to beams with full interaction, and codified expressions for the calculation of such deflections are not fully developed and validated. Thus, this paper presents a comprehensive numerical study on the deflections of steel-concrete composite beams with partial interaction. Efficient numerical models of full-scale composite beams considering material nonlinearities and contact between their parts have been developed by means of the advanced software ABAQUS, including a damage model to simulate the concrete slab. The FE models were validated against experimental results, and subsequently parametric studies were developed to investigate the influence of the shear connection degree and the coefficient of friction in the deflection of composite beams. The comparison of predicted deflections using reference codes (AISC, Eurocode-4 and AS-2327.1) against numerical results showed that there are still inaccuracies in the estimation of deflections for the verification of the serviceability limit state, according to some of the analyzed codes.

Fatigue performance monitoring of full-scale PPC beams by using the FBG sensors

  • Wang, Licheng;Han, Jigang;Song, Yupu
    • Smart Structures and Systems
    • /
    • 제13권6호
    • /
    • pp.943-957
    • /
    • 2014
  • When subjected to fatigue loading, the main failure mode of partially prestressed concrete (PPC) structure is the fatigue fracture of tensile reinforcement. Therefore, monitoring and evaluation of the steel stresses/strains in the structure are essential issues for structural design and healthy assessment. The current study experimentally investigates the possibility of using fiber Bragg grating (FBG) sensors to measure the steel strains in PPC beams in the process of fatigue loading. Six full-scale post-tensioned PPC beams were exposed to fatigue loading. Within the beams, the FBG and resistance strain gauge (RSG) sensors were independently bonded onto the surface of tensile reinforcements. A good agreement was found between the recorded results from the two different sensors. Moreover, FBG sensors show relatively good resistance to fatigue loading compared with RSG sensors, indicating that FBG sensors possess the capability for long-term health monitoring of the tensile reinforcement in PPC structures. Apart from the above findings, it can also be found that during the fatigue loading, there is stress redistribution between prestressed and non-prestressed reinforcements, and the residual strain emerges in the non-prestressed reinforcement. This phenomenon can bring about an increase of the steel stress in the non-prestressed reinforcement.

FRP복합체로 보강된 실물모형 RC보의 보강재 강성에 따른 휨 보강성능 (Flexural Performance of Full-scale RC Beams Strengthened with Different Amount of FRP Composite)

  • 최기선;유영찬;김긍환
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2006년도 추계 학술발표회 논문집
    • /
    • pp.125-128
    • /
    • 2006
  • Many research have been carried out concerned with the flexural performance of FRP composite in a various ways. Most of them, however, have used a small-scale specimen, so haven't been fully verified by full-scale model test. In this study, a full-scale RC beam model test for flexural strengthening with CFRP composites has been performed in order to verify test results obtained through a series of small-scale model test with respect to FRP stiffness affecting strengthening performance in the previous studies. A total of 4 specimens have been manufactured including control beam. The specimens strengthened with CFRP composites consist of 3 different CFRP stiffness with 2 types of CFRP composite. Consequently, the purpose of this study is to estimate influence of the size effect of specimens and FRP stiffness on the flexural performance. As a result, the effective strain of FRP composite is inversely proportional to FRP stiffness and ensures the same performance with small-scale model test.

  • PDF

순수휨 구간내 스터럽이 보강된 고강도 콘크리트 보의 휨거동 연구 (Flexural Behavior of High-Strength Concrete Beams with Confinement in Pure Bending Zone)

  • 장일영;박훈규;황규철;남성현
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2002년도 봄 학술발표회 논문집
    • /
    • pp.959-964
    • /
    • 2002
  • The purpose of this study is to establish flexural behavior of high-strength concrete by means of both theoretical approach and experimental analysis of beams in which confinement stirrups have been introduced into pure bending zone. The experiment was carried out on full-scale high-strength reinforced concrete beams whose compressive strengths are 400 and 700kgf/cm$^2$, and confined with rectangular closed stirrups. The test results are reviewed in terms of flexural capacity and ductility.

  • PDF

Shear behaviour of RC T-beams strengthened with U-wrapped GFRP sheet

  • Panda, K.C.;Bhattacharyya, S.K.;Barai, S.V.
    • Steel and Composite Structures
    • /
    • 제12권2호
    • /
    • pp.149-166
    • /
    • 2012
  • This paper presents an experimental investigation on the performance of 2.5 m long reinforced concrete (RC) T-beams strengthened in shear using epoxy bonded glass fibre fabric. Eighteen (18) full scale, simply supported RC T-beams are tested. Nine beams are used as control beam specimens with three different stirrups spacing without glass fibre reinforced polymer (GFRP) sheet and rest nine beams are strengthened in shear with one, two, and three layers of GFRP sheet in the form of U-jacket around the web of T-beams for each type of stirrup spacing. The objective of this study is to evaluate the effectiveness, the cracking pattern and modes of failure of the GFRP strengthened RC T-beams. The test result indicates that for RC T-beams strengthened in shear with U-jacketed GFRP sheets, increase the load carrying capacity by 10-46%.