• 제목/요약/키워드: full-length infectious cDNA clone

검색결과 14건 처리시간 0.024초

Developing New Mammalian Gene Expression Systems Using the Infectious cDNA Molecular Clone of the Japanese Encephalitis Virus

  • Yun Sang-Im;Choi Yu-Jeong;Park Jun-Sun;Kim Seok-Yong;Lee Young-Min
    • 한국미생물학회:학술대회논문집
    • /
    • 한국미생물학회 2003년도 International Meeting of the Microbiological Society of Korea
    • /
    • pp.83-86
    • /
    • 2003
  • Major advances in positive-sense RNA virus research have been facilitated by the development of reverse genetics systems. These systems consist of an infectious cDNA clone that encompasses the genome of the virus in question. This clone is then used as a template for the subsequent synthesis of infectious RNA for the generation of synthetic viruses. However, the construction of infectious cDNA for the Japanese encephalitis virus (JEV) has been repeatedly thwarted by the instability of its cDNA. As JEV is an important human pathogen that causes permanent neuropsychiatric sequelae and even fatal disease, a reliable reverse genetics system for this virus is highly desirable. The availability of this tool would greatly and the development of effective vaccines as well as facilitate studies into the basic biology of the virus, including the molecular mechanisms of viral replication, neurovirulence, and pathogenesis. We have successfully constructed a genetically stable infectious JEV cDNA containing full-length viral RNA genome. Synthetic RNA transcripts generated in vitro from the cDNA were highly infectious upon transfection into susceptible cells, and the cDNA remained stable after it had been propagated in E. coli for 180 generations. Using this infectious JEV cDNA, we have successfully expressed a variety of reporter genes from the full-length genomic and various subgenomic RNAs in vitro transcribed from functional JEV cDNAS. In summary, we have developed a reverse genetics system for JEV that will greatly facilitate the research on this virus in a variety of different fields. It will also be useful as a heterologous gene expression vector and aid the development of a vaccine against JEV.

  • PDF

Complete Genome Sequencing and Infectious cDNA Clone Construction of Soybean Mosaic Virus Isolated from Shanxi

  • Wang, Defu;Cui, Liyan;Zhang, Li;Ma, Zhennan;Niu, Yanbing
    • The Plant Pathology Journal
    • /
    • 제37권2호
    • /
    • pp.162-172
    • /
    • 2021
  • Soybean mosaic virus (SMV) is the predominant viral pathogen that affects the yield and quality of soybean. The natural host range for SMV is very narrow, and generally limited to Leguminosae. However, we found that SMV can naturally infect Pinellia ternata and Atractylodes macrocephala. In order to clarify the molecular mechanisms underlying the cross-family infection of SMV, we used double-stranded RNA extraction, rapid amplification of cDNA ends polymerase chain reaction and Gibson assembly techniques to carry out SMV full-length genome amplification from susceptible soybeans and constructed an infectious cDNA clone for SMV. The genome of the SMV Shanxi isolate (SMV-SX) consists of 9,587 nt and encodes a polyprotein consisting of 3,067 aa. SMV-SX and SMV-XFQ008 had the highest nucleotide and amino acid sequence identities of 97.03% and 98.50%, respectively. A phylogenetic tree indicated that SMV-SX and SMV-XFQ018 were clustered together, sharing the closest relationship. We then constructed a pSMV-SX infectious cDNA clone by Gibson assembly technology and used this clone to inoculate soybean and Ailanthus altissima; the symptoms of these hosts were similar to those caused by the virus isolated from natural infected plant tissue. This method of construction not only makes up for the time-consuming and laborious defect of traditional methods used to construct infectious cDNA clones, but also avoids the toxicity of the Potyvirus special sequence to Escherichia coli, thus providing a useful cloning strategy for the construction of infectious cDNA clones for other viruses and laying down a foundation for the further investigation of SMV cross-family infection mechanisms.

Construction of Infectious cDNA Clone of a Chrysanthemum stunt viroid Korean Isolate

  • Yoon, Ju-Yeon;Cho, In-Sook;Choi, Gug-Seoun;Choi, Seung-Kook
    • The Plant Pathology Journal
    • /
    • 제30권1호
    • /
    • pp.68-74
    • /
    • 2014
  • Chrysanthemum stunt viroid (CSVd), a noncoding infectious RNA molecule, causes seriously economic losses of chrysanthemum for 3 or 4 years after its first infection. Monomeric cDNA clones of CSVd isolate SK1 (CSVd-SK1) were constructed in the plasmids pGEM-T easy vector and pUC19 vector. Linear positive-sense transcripts synthesized in vitro from the full-length monomeric cDNA clones of CSVd-SK1 could infect systemically tomato seedlings and chrysanthemum plants, suggesting that the linear CSVd RNA transcribed from the cDNA clones could be replicated as efficiently as circular CSVd in host species. However, direct inoculation of plasmid cDNA clones containing full-length monomeric cDNA of CSVd-SK1 failed to infect tomato and chrysanthemum and linear negative-sense transcripts from the plasmid DNAs were not infectious in the two plant species. The cDNA sequences of progeny viroid in systemically infected tomato and chrysanthemum showed a few substitutions at a specific nucleotide position, but there were no deletions and insertions in the sequences of the CSVd progeny from tomato and chrysanthemum plants.

Cloning of the 5'-end and Amplification of Full-Length cDNA of Genomic RNA of Lily symptomless virus

  • Park, Seon-Ah;Ryu, Ki-Hyun
    • The Plant Pathology Journal
    • /
    • 제18권4호
    • /
    • pp.187-191
    • /
    • 2002
  • This paper describes the cloning and sequence analysis of the 5'-terminal region and full-length cDNA production of genomic RNA of Lily symptomless virus (LSV), a Species Of the genus Carlavirus. A sing1e DNA band about 600 bp harboring the 5'-end of genomic RNA of the virus was successfully amplified by reverse transcription-polymerase chain reaction (RT-PCR) and rapid amplification of cDNA ends (RACE), and was cloned for nucleotide sequence determination. Sequence analysis of selected RACE cDNA clones revealed that the LSV 5'non-translated region consists of 67 nucleotides long of AT rich stretch followed GC rich from the 5'-end. To produce full-length cDNA products for the viral genomic RNA, a set of LSV-specific primers could be designed based on the obtained sequence in this study and the known sequences of 3'-terminal region for the virus. Full-length cDNA copies of LSV, an 8.4 kb long, were directly amplified by the long-template RT-PCR technique from the purified viral genomic RNA samples. This full-length cDNA copies were analyzed by restriction mapping. The molecules produced in this study can be useful for the production of in vitro infectious cDNA clone, as well as, for the completion of genomic RNA sequence and genome structure for the virus.

Molecular Characterization and Infectious cDNA Clone of a Korean Isolate of Pepper mild mottle virus from Pepper

  • Yoon, Ju-Yeon;Hong, Jin-Sung;Kim, Min-Jea;Ha, Ju-Hee;Choi, Gug-Seon;Choi, Jang-Kyung;Ryu, Ki-Hyun
    • The Plant Pathology Journal
    • /
    • 제21권4호
    • /
    • pp.361-368
    • /
    • 2005
  • A Korean isolate of Pepper mild mottle virus (PMMoV-Kr) was isolated from a diseased hot pepper plant and its biological and molecular properties were compared to that of PMMoV-J and PMMo V -So The genomic RNA of PMMoV-Kr consists of 6,356 nucleotides. The nucleotide and amino acid sequences identities of four viral proteins and two noncoding regions among PMMoV-Kr, PMMoV-S and PMMoV-J were $96.9\%\;to\;100.0\%\;and\;97.5\%\;to\;98.6\%$, respectively. Full-length cDNA amplicon of PMMoV-Kr was directly amplified by RT-PCR with a set of 5'-end primer anchoring T7 RNA promoter sequence and 3'-end virus-specific primer. Capped transcript RNAs from the full-length cDNA clone were highly infectious and caused characteristic symptoms of wild type PMMoV when mechanically inoculated to systemic host plants such as Nicotiana benthamiana and pepper plants.

Establishment of a Simple and Rapid Gene Delivery System for Cucurbits by Using Engineered Zucchini Yellow Mosaic Virus

  • Kang, Minji;Seo, Jang Kyun;Choi, Hoseong;Choi, Hong Soo;Kim, Kook Hyung
    • The Plant Pathology Journal
    • /
    • 제32권1호
    • /
    • pp.70-76
    • /
    • 2016
  • The infectious full-length cDNA clone of zucchini yellow mosaic virus (ZYMV) isolate PA (pZYMV-PA), which was isolated from pumpkin, was constructed by utilizing viral transcription and processing signals to produce infectious in vivo transcripts. Simple rub-inoculation of plasmid DNAs of pZYMV-PA was successful to cause infection of zucchini plants (Cucurbita pepo L.). We further engineered this infectious cDNA clone of ZYMV as a viral vector for systemic expression of heterologous proteins in cucurbits. We successfully expressed two reporter genes including gfp and bar in zucchini plants by simple rub-inoculation of plasmid DNAs of the ZYMV-based expression constructs. Our method of the ZYMV-based viral vector in association with the simple rub-inoculation provides an easy and rapid approach for introduction and evaluation of heterologous genes in cucurbits.

Generation of an Infectious Clone of a New Korean Isolate of Apple chlorotic leaf spot virus Driven by Dual 35S and T7 Promoters in a Versatile Binary Vector

  • Kim, Ik-Hyun;Han, Jae-Yeong;Cho, In-Sook;Ju, HyeKyoung;Moon, Jae Sun;Seo, Eun-Young;Kim, Hong Gi;Hammond, John;Lim, Hyoun-Sub
    • The Plant Pathology Journal
    • /
    • 제33권6호
    • /
    • pp.608-613
    • /
    • 2017
  • The full-length sequence of a new isolate of Apple chlorotic leaf spot virus (ACLSV) from Korea was divergent, but most closely related to the Japanese isolate A4, at 84% nucleotide identity. The full-length cDNA of the Korean isolate of ACLSV was cloned into a binary vector downstream of the bacteriophage T7 RNA promoter and the Cauliflower mosaic virus 35S promoter. Chenopodium quinoa was successfully infected using in vitro transcripts synthesized using the T7 promoter, detected at 20 days post inoculation (dpi), but did not produce obvious symptoms. Nicotiana occidentalis and C. quinoa were inoculated through agroinfiltration. At 32 dpi the infection rate was evaluated; no C. quinoa plants were infected by agroinfiltration, but infection of N. occidentalis was obtained.

Bovine Vira1 Diarrhea Virus를 이용한 포유동물세포 발현벡터의 개발 (Generation of a Mammalian Gene Expression Vector Using Bovine Viral Diarrhea Virus)

  • 이영민
    • 미생물학회지
    • /
    • 제38권2호
    • /
    • pp.86-95
    • /
    • 2002
  • 최근 인간을 비롯한 다양한 생명체의 genome project연구결과 밝혀진 유전자들의 염기서열을 토대로, 생명체 구성성분의 실질적 인 역할을 하는 단배질의 기능을 밝히는 proteomics에 관한 연구의 필요성 이 대두되고 있다. 따라서, 이 연구는 post-genomics시대에 다양한 종류의 단백질 기능과 상호작용의 기초연구에 필수적 인 새로운 포유동물세포 유전자 발현벡터를 RNA 바이러스인 소설사성 바이러스(Bovine Viral Diarrhea Virus)의 infectious CDNA molecular clone을 이용하여 개발하였다. 먼저 BVDV의 infectious CDNA molecular clone (pNADLclns-)을 이용하여 puromycin 항생제에 저항성을 나타내는 puromycin acetyltransferase (pac) 유전자를 삽입하여 recombinant full-length infectious CDNA clone을 합성하였다. 합성된 recombinant CDNA clone을 주형으로 T7 RNA polymerase를 사용하여 in vitro transcribed full-length viral RNA를 합성하였다. 합성된 viral RNA의 자가복제 여부는 MDBK세포에 transfection시킨 후, $^{32}P$ 로 metabolically label함으로써 확인하였다. 또한, transfection된 세포에서의 바이러스 단백질 발현여부는 바이러스에 특이적으로 반응하는 anti-NS3 단클론항체를 사용하여 분석하였다. 또한, infectious CDNA clone을 응용하여 새로운 포유동물세포유전자 발현벡터의 개발을 위해서, 먼저 바이러스의 구조단백질이 바이러스의 자가복제에 필수적인 지를 평가하였다. 실험결과, 각각의 구조단백질 유전자를 deletion한 recombinant cDNA clone으로부터 합성된 viral RMA의 자가복제여부는pac유전자의 발현여부로 recombinant cDNA clone으로부터 합성된 recombinant viral RMA를 MDBK 세포에 transfection시킨 후, puromycin으로 selection함으로써 할 수 있었다. Deletion실험결과, 각각의 구조단백질 capsid및 E0, El, E2는 바이러스의 자가복제에 영향을 기치지 않음을 알 수 있었다. 이와 더불어, 바이러스의 모든 구조단백질을 함께deletion하였을 경우에도 자가복제에는 영향을 기치지 않는 것을 합성된 viral replicon을 이용한 실험에서 알 수 있었다. 이렇게 합성된 BVDV의 replicon을 사용하여 포유동물의 발현벡터로써 사용할수 있는 지의 여부를 분석하기 위해서 pac유전자 이외에 luciferase유전자를 사용하여 MDBK및 HeLa, BHK세포에서의 단백질 발현정도를 시간 별로 분석한 결과, BVDV의 replicon을 다양한 종류의 유전자 발현벡터로사용할 수 있음을 알 수 있었다. 그러므로, RNA바이러스의 하나인 BVDV의 viral replicon을 이용하여 다양한 종류의 포유동물 세포에 유전자 발현벡터로써 사용할 수 있음으로 post-genomics시대에 다양한 종류의 단백질 기능연구에 맡은 도움이 되리라 기대한다.

Pathogenicity of a Korean isolate of Pepper mild mottle virus and development of full-length cDNA clone for infectious in vitro transcripts

  • J.Y. Yoon;Park, J.K.;Y.M. Yu;K.H. Ryu
    • 한국식물병리학회:학술대회논문집
    • /
    • 한국식물병리학회 2003년도 정기총회 및 추계학술발표회
    • /
    • pp.143.3-144
    • /
    • 2003
  • A Korean isolate of Pepper mild mottle virus (PMMoV-Kr) was isolated from a diseased pepper crop in Chunchon, Korea. The isolate was biologically purified on Nicoticaa tabacum cv. Xanthi-nc by successive single local transfer steps, and propagated on N. tabacum cv. Samsun. PMMoV-Kr could systemically infect on N. glauca, N. benthmiana, N. occidentalis and Lycopersicon esculentum, which is typical of known isolates of PMMoV. PMMoV-Kr belongs to the pathotype P1,2 based on pepper-tobamoviral indicator experiments; Capsicn chinone harboring L3 gene revealed resistant (necrotic local lesion on inoculated leaf, HR) whereas L+, L1 and L2 pepper plants expressed susceptible reactions of mosaic systemic symptoms for the isolate. To confirm the pathology and delineate symptom determinant of the isolate, full-length cDNAs of PMMoV-Kr were amplified by RT-PCR with a primer set corresponding to the 5'- and 3'-ends of PMMoV. The RT-PCR molecules amplified from genome RNA of the isolate was cloned into the pUC18 vector. Full-length cDNA clones constructed under the control of the T7 RNA promoter could be successfully transcribed to produce in vitro transcript RNA. Infectivity of the capped transcripts and its progeny virus was verified by Western blot and RT-PCR analyses.

  • PDF

PRRS 바이러스 ORF5a 단백질의기능학적역할 (ORF5a Protein of Porcine Reproductive and Respiratory Syndrome Virus is Indispensable for Virus Replication)

  • 오종석;이창희
    • 한국미생물·생명공학회지
    • /
    • 제43권1호
    • /
    • pp.1-8
    • /
    • 2015
  • 돼지생식기호흡기증후군(porcine reproductive and respiratory syndrome; PRRS) 바이러스의 ORF5a 단백질이 바이러스 생장에 필수적인 단백질인지 확인하기 위해서 PRRS 바이러스 감염성 클론을 이용하여 ORF5a 단백질 유전자를 결손시킨 변이 클론을 제작하였다. 야생형 PRRS 바이러스 감염성 클론과 ORF5a 단백질이 결손된 변이 클론을 BHK-tailless pCD163 세포에 transfection시킨 결과 변이클론에서감염성있는바이러스가숙주세포로부터만들어지지않았다. 이결과가 ORF5a 단백질발현의부재때문인지검증하기위해서 BHK-tailless pCD163-tailless 세포에 ORF5a 단백질을안정적으로발현하는세포주를제작하였고이세포주에동일한 transfection 실험을한결과세포에서공급되는 ORF5a 단백질발현에의해감염성있는바이러스가만들어지는것을확인하였다. 이로써 ORF5a 단백질이 PRRS 바이러스가 생장하는데 있어서 필수적인 단백질임을 확인할 수 있었다.